199
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Shockwave and dynamic pressure propagation law of methane–air explosion in full-scale pipe network

, ORCID Icon, , &
Pages 9920-9934 | Received 17 Aug 2022, Accepted 24 Oct 2022, Published online: 07 Nov 2022

References

  • Ajrash, M. J., J. Zanganeh, and B. Moghtaderi. 2017. Deflagration of premixed methane–air in a large scale detonation tube. Process Safety and Environmental Protection 109:374–86. doi: 10.1016/j.psep.2017.03.035
  • Ajrash, M. J., J. Zanganeh, and B. Moghtaderi. 2018. Flame deflagration in side-on vented detonation tubes: A large scale study. Journal of Hazardous Materials 345:38–47. doi: 10.1016/j.jhazmat.2017.11.014
  • Cashdollar, K. L.; S. P. Harteis; M. J. Sapko; J. E. Urosek; E. S. Weiss. 2009. Results of in-mine research in support of the investigation of the Sago Mine explosion. https://stacks.cdc.gov/view/cdc/11541
  • Davis, S. G., D. Engel, and K. van Wingerden. 2015. Complex explosion development in mines: Case study—2010 upper big branch mine explosion. Process Safety Progress 34:286–303. doi: 10.1002/prs.11710
  • Di Benedetto, A., F. Cammarota, V. Di Sarli, E. Salzano, and G. Russo. 2011. Anomalous behavior during explosions of CH4 in oxygen-enriched air. Combustion and Flame 158:2214–19. doi: 10.1016/j.combustflame.2011.03.015
  • Feng, Y. K., X. Cao, W. G. Cao, H. Yi-Jun, and Z. N. Pei. 2018. Experimental study on the explosion suppression characteristics of carbon dioxide on methane in visible square pipes. Fire Science and Technology 37(1):14–18.
  • Fernández-Tarrazo, E., A. L. Sánchez, A. Liñán, and F. A. Williams. 2006. A simple one-step chemistry model for partially premixed hydrocarbon combustion. Combustion and Flame 147:32–38. doi: 10.1016/j.combustflame.2006.08.001
  • Goldfarb, I., V. Gol’Dshtein, D. Katz, and S. Sazhin. 2007. Radiation effect on thermal explosion in a gas containing evaporating fuel droplets. Combustion Theory Model 46:358–70. doi: 10.1016/j.ijthermalsci.2006.06.014
  • Kundu, S. K., J. Zanganeh, and D. Eschebach. 2018. Confined explosion of methane-air mixtures under turbulence. Fuel 220: 471–80. doi: 10.1016/j.fuel.2018.02.043
  • Kundu, S., J. Zanganeh, and B. Moghtaderi. 2016. A review on understanding explosions from methane–air mixture. Journal of Loss Prevention in the Process Industries 40:507–23. doi: 10.1016/j.jlp.2016.02.004
  • Lin, B. Q., C. Guo, Y. M. Sun, C. J. Zhu, Y. D. Hong, and H. Yao. 2016. Effect of bifurcation on premixed methane-air explosion overpressure in pipes. Journal of Loss Prevention in the Process Industries 43:464–70. doi: 10.1016/j.jlp.2016.07.011
  • Li, Y., J. Xiao, H. Zhang, W. Breitung, J. Travis, M. Kuznetsov, and T. Jordan. 2021. Numerical analysis of hydrogen release, dispersion and combustion in a tunnel with fuel cell vehicles using all-speed CFD code GASFLOW-MPI. International Journal of Hydrogen Energy 46(23):12474–86. doi:10.1016/j.ijhydene.2020.09.063.
  • Mittal, M. 2017. Explosion pressure measurement of methane-air mixtures in different sizes of confinement. Journal of Loss Prevention in the Process Industries 46:200–08. doi: 10.1016/j.jlp.2017.02.022
  • Mitu, M., V. Giurcan, C. Movileanu, D. Razus, and D. Oancea. 2021. Propagation of CH4-N2O-N2 flames in a closed spherical vessel. Processes 9(5):851. doi:10.3390/pr9050851.
  • Mitu, M., V. Giurcan, D. Razus, and D. Oancea. 2017.Inert gas influence on the laminar burning velocity of methane-air mixtures. Journal of Hazardous Materials 321:440–48. doi: 10.1016/j.jhazmat.2016.09.033
  • Mitu, M., D. Razus, and V. Schroeder. 2021. Laminar burning velocities of hydrogen-blended methane–air and natural gas–air mixtures, calculated from the early stage of p (t) records in a spherical vessel. Energies 14(22):7556. doi:10.3390/en14227556.
  • Savinkenko, C. K. 1979. Underground air shock wave. first D. Purich. ed. Beijing: Metallurgical Industry Press(translation).
  • Siegel, R., and J. Howell. 1992. Thermal radiation heat transfer. 3rd ed. Washington: Hemisphere Publishing.
  • Siegel, R., and J. R. Howell. 1992. Thermal radiation heat transfer. third. Hemisphere Publishing:Washington.
  • Travis, J. R., and D. P. Koch. 2014. GASFLOW simulations of a Bonfire test. International Journal of Hydrogen Energy 39(24):13041–47. doi:10.1016/j.ijhydene.2014.06.026.
  • Wang, Y. Y., B. Qin, and Q. Zhang. 2007. Characteristic propagation features of the explosion air shock wave at the corner of tunnel. Journal of Environment and Safety 7:105.
  • Xiao, J., W. Breitung, M. Kuznetsov, H. Zhang, J. R. Travis, R. Redlinger, and T. Jordan. 2017. GASFLOW-MPI: A new 3-D parallel all-speed CFD code for turbulent dispersion and combustion simulations: Part I: Models, verification and validation. International Journal of Hydrogen Energy 42(12):8346–68. doi:10.1016/j.ijhydene.2017.01.215.
  • Xiao, J., M. Kuznetsov, and J. R. Travis. 2018. Experimental and numerical investigations of hydrogen jet fire in a vented compartment. International Journal of Hydrogen Energy 43(21):10167–84. doi:10.1016/j.ijhydene.2018.03.178.
  • Ye, Q., G. Wang, Z. Jia, and C. Zheng. 2017.Experimental study on the influence of wall heat effect on gas explosion and its propagation. Applied Thermal Engineering 118:392–97. doi: 10.1016/j.applthermaleng.2017.02.084
  • Zhang, H., Y. Li, J. Xiao, and T. Jordan. 2018.Detached eddy simulation of hydrogen turbulent dispersion in nuclear containment compartment using GASFLOW-MPI. International Journal of Hydrogen Energy 43:13659–75. doi: 10.1016/j.ijhydene.2018.05.077
  • Zhang, Q., and Q. J. Ma. 2015.Dynamic pressure induced by a methane–air explosion in a coal mine. Process Safety and Environmental Protection 93:233–39. doi: 10.1016/j.psep.2014.05.005
  • Zhu, C. J., Z. S. Gao, X. M. Lu, B. Q. Lin, C. Guo, and Y. M. Sun. 2017.Experimental study on the effect of bifurcations on the flame speed of premixed methane/air explosions in ducts. Journal of Loss Prevention in the Process Industries 49:545–50. doi: 10.1016/j.jlp.2017.05.016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.