95
Views
0
CrossRef citations to date
0
Altmetric
Research Article

FTIR-based study on the effect of deashing on the molecular structure of Hefeng sub-bituminous coal and its liquefaction residue

ORCID Icon, , ORCID Icon, , , , & show all
Pages 10395-10408 | Received 12 Jan 2022, Accepted 07 Nov 2022, Published online: 01 Dec 2022

References

  • Baysal, M., A. Yurum, B. Yildiz, and Y. Yurum. 2016. Structure of some western Anatolia coals investigated by FTIR, Raman, 13C solid state NMR spectroscopy and X-ray diffraction. International Journal of Coal Geology 163:166–76. doi:10.1016/j.coal.2016.07.009.
  • Chen, Y., M. Mastalerz, and A. Schimmelmann. 2012. Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy. International Journal of Coal Geology 104:22–33. doi:10.1016/j.coal.2012.09.001.
  • Chen, J., and T. Yan. 2019. FTIR analysis of coal group component. Chemical Bioengineering 36:57–59.
  • Guo, D., J. Ye, Q. Wang, and X. Guo. 2016. FTIR and 13C NMR characterizations for deformed coal in Pingdingshan mining. Journal China Coal Society 41:3040–46.
  • Haghighat, F., and A. D. Klerk. 2014. Direct coal liquefaction: low temperature dissolution process. Energy & Fuels : An American Chemical Society Journal 28 (2):1012–19. doi:10.1021/ef402359b.
  • He, C., M. Du, L. Liu, and H. Ren. 2018. Effect of demineralization on structure of Fushun amber coal. Applied Chemical Industry 47:2609–12.
  • He, X., X. Liu, B. Nie, and D. Song. 2017. FTIR and Raman spectroscopy characterization of functional groups in various rank coals. Fuel 206:555–63. doi:10.1016/j.fuel.2017.05.101.
  • Jiang, J., W. Yang, Y. Cheng, Z. Liu, Q. Zhang, and K. Zhao. 2019. Molecular structure characterization of middle-high rank coal via XRD, Raman and FTIR spectroscopy: Implications for coalifcation. Fuel 239:559–72. doi:10.1016/j.fuel.2018.11.057.
  • Jin, H., Y. Chen, Z. Ge, S. Liu, C. Ren, and L. Guo. 2015. Hydrogen production by Zhundong coal gasification in supercritical water. International Journal Hydrogen Energy 40 (46):16096–103. doi:10.1016/j.ijhydene.2015.09.003.
  • Jing, Z., S. Rodrigues, E. Strounina, M. Li, B. Wood, J. Underschultz, J. Estelre, and K. M. Steel. 2019. Use of FTIR, XPS, NMR to characterize oxidative effects of NaClo on coal molecular structures. International Journal of Coal Geology 201:1–13. doi:10.1016/j.coal.2018.11.017.
  • Jin, L., K. Han, J. Wang, and H. Hu. 2014. Direct liquefaction behaviors of Bulianta coal and its macerals. Fuel Processing Technology 128:232–37. doi:10.1016/j.fuproc.2014.07.033.
  • Kanca, A., M. Dodd, J. A. Reimer, and D. Uner. 2016. Following the structure and reactivity of Tuncbilek lignite during pyrolysis and hydrogenation. Fuel Processing Technology 152:266–73. doi:10.1016/j.fuproc.2016.06.014.
  • Kong, L., J. Bai, and W. Li. 2021. Viscosity-temperature property of coal ash slag at the condition of entrained flow gasification: A review. Fuel Processing Technology 215:106751. doi:10.1016/j.fuproc.2021.106751.
  • Liang, P., X. Qin, G. Bai, Z. Wu, D. Sun, Y. Zhang, and T. Jiao. 2019. Effects of ionic liquid pretreatment on pyrolysis characteristics of a high-sulfur bituminous coal. Fuel 258:116134. doi:10.1016/j.fuel.2019.116134.
  • Liang, H., C. Wang, F. Zeng, M. Li, and J. Xiang. 2014. Effect of demineralization on lignite structure from Yinmin coalfield by FT-IR investigation. Journal of Fuel Chemistry and Technology 42:129–37.
  • Li, W., Z. Bai, J. Bai, and X. Li. 2017. Transformation and roles of inherent mineral matter in direct coal liquefaction: A mini-review. Fuel 197:209–16. doi:10.1016/j.fuel.2017.02.024.
  • Li, X., J. Li, Z. Ma, Z. Bai, J. Zhang, G. Wu, W. Li. 2019. Insight into cross-linking reactions induced by carboxylates in direct coal liquefaction using coal-related model compounds and hydrogen transfer calculation. Fuel 239:484–90. doi:10.1016/j.fuel.2018.11.063.
  • Li, S., X. Lin, B. Lu, Y. Wang, D. Zhang, and Y. Zhou. 2019. Effects of minerals on pyrolysis characteristics of maceral in high-alkali coal. Chemical Industry and Engineering Progress 38:3650–57.
  • Lin, X., C. Wang, K. Ideta, J. Miyawaki, Y. Nishiyama, Y. G. Wang, S. Yoon, and I. Mochida. 2014. Insights into the functional group transformation of a chines e brown coal during slow pyrolysis by combining various experiments. Fuel 118:257–64. doi:10.1016/j.fuel.2013.10.081.
  • Li, H., S. Shi, B. Lin, J. Lu, Q. Ye, Y. Lu, Z. Wang, Y. Hong, and X. Zhu. 2019. Effects of microwave-assisted pyrolysis on the microstructure of bituminous coals. Energy 187:115986. doi:10.1016/j.energy.2019.115986.
  • Liu, J., L. Luo, J. Ma, H. Zhang, and X. Jiang. 2016. Chemical properties of superfine pulverized coal particles. 3. Nuclear magnetic resonance analysis of carbon structural features. Energy & Fuels : An American Chemical Society Journal 30 (8):6321–29. doi:10.1021/acs.energyfuels.6b01029.
  • Li, C., J. Xiang, X. Deng, E. Li, and H. Liu. 2019. FTIR structure characterization analysis of Liulin No.3 coal before and after pyridine extraction. Coal Conversion 42:1–8.
  • Li, M., F. Zeng, H. Chang, B. Xu, and W. Wang. 2013. Aggregate structure evolution of low-rank coals during pyrolysis by in-situ X-ray diffraction. International Journal of Coal Geology 116:262–69. doi:10.1016/j.coal.2013.07.008.
  • Li, T., L. Zhang, L. Dong, and C. Li. 2014. Effects of gasification atmosphere and temperature on char structural evolution during the gasification of Collie sub-bituminous coal. Fuel 117:1190–95. doi:10.1016/j.fuel.2013.08.040.
  • Li, W., and Y. Zhu. 2014. Structural characteristics of coal vitrinite during pyrolysis. Energy & Fuels : An American Chemical Society Journal 28 (6):3645–54. doi:10.1021/ef500300r.
  • Li, P., Z. Zong, F. Liu, Y. Wang, X. Wei, X. Fan, Y. Zhao, and W. Zhao. 2015. Sequential extraction and characterization of liquefaction residue from Shenmu-Fugu subbituminous coal. Fuel Processing Technology 136:1–7. doi:10.1016/j.fuproc.2014.04.013.
  • Li, P., Z. Zong, Z. Li, Y. Wang, F. Liu, and X. Wei. 2015. Characterization of basic heteroatom-containing organic compounds in liquefaction residue from Shenmu-Fugu subbituminous coal by positive-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Fuel Processing Technology 132:91–98. doi:10.1016/j.fuproc.2014.12.026.
  • Li, P., Z. Zong, X. Wei, Y. Wang, and G. Fan. 2019. Structural features of liquefaction residue from Shenmu-Fugu subbituminous coal. Fuel 244:819–27. doi:10.1016/j.fuel.2019.01.004.
  • Lv, D., Y. Wei, Z. Bai, J. Bai, L. Kong, Z. Guo, J. Yan, and W. Li. 2015. An approach for utilization of direct coal liquefaction residue: Blending with low-rank coal to prepare slurries for gasification. Fuel 145:143–50. doi:10.1016/j.fuel.2014.12.075.
  • Ma, Y., F. Ma, W. Mo, and Q. Wang. 2020. Five-stage sequential extraction of Hefeng coal and direct liquefaction performance of the extraction residue. Fuel 266:117039. doi:10.1016/j.fuel.2020.117039.
  • Miao, Z., J. Wu, Y. Zhang, and Y. Jiang. 2019. Transformation of included and excluded minerals in process of producing gasification coke with blended coal. Coal Conversion 42:46–53.
  • Mo, W., X. He, Y. Ma, J. Ma, Y. Ma, F. Ma, X. Fan, and X. Wei. 2020. Effect oF swelling with ionic liquid on the molecular structure and pyrolysis behavior of hefeng sub-bituminous coal. Energy & Fuels : An American Chemical Society Journal 34 (12):16099–108. doi:10.1021/acs.energyfuels.0c03127.
  • Rubiera, F., A. Arenillas, C. Pevida, R. Garcia, J. J. Pis, K. M. Steel, and J. W. Patrick. 2002. Coal structure and reactivity changes induced by chemical demineralization. Fuel Processing Technology 79 (3):273–79. doi:10.1016/S0378-3820(02)00185-6.
  • Shi, K., X. Gui, X. Tao, J. Long, and Y. Ji. 2015. Macromolecular structural unit construction of fushun nitric-acid oxidized coal. Energy & Fuels : An American Chemical Society Journal 29 (6):3566–72. doi:10.1021/ef502859r.
  • Song, Y., W. Feng, N. Li, Y. Li, K. Zhi, Y. Teng, R. He, H. Zhou, and Q. Liu. 2016. Effects of demineralization on the structure and combustion properties of Shengli lignite. Fuel 183:659–67. doi:10.1016/j.fuel.2016.06.109.
  • Song, Q., H. Zhao, J. Jia, L. Yang, W. Lv, Q. Gu, and X. Shu. 2020. Effects of demineralization on the surface morphology, microcrystalline and thermal transformation characteristics of coal. Journal of Analytical and Applied Pyrolysis 145:104716. doi:10.1016/j.jaap.2019.104716.
  • Wang, J., and L. Chang. 2016. Structure and combustion characteristics of high inertinite coal demineralized by stepwise chemical methods. Energy Sources Part A-Recovery Utilization and Environmental Effects 38 (19):2922–27. doi:10.1080/15567036.2012.739261.
  • Wang, J., Y. He, H. Li, J. Yu, W. Xie, and H. Wei. 2017. The molecular structure of Inner Mongolia lignite utilizing XRD, solid state 13C NMR, HRTEM and XPS techniques. Fuel 203:763–64. doi:10.1016/j.fuel.2017.05.042.
  • Wang, M., Z. Li, W. Huang, J. Yang, and H. Xue. 2015. Coal pyrolysis characteristics by TG-MS and its late gas generation potential. Fuel 156:243–53. doi:10.1016/j.fuel.2015.04.055.
  • Wang, S., Y. Tang, H. Schobert, Y. Guo, and Y. Su. 2011. FTIR and 13C NMR investigation of coal component of Late Permian coals from Southern China. Energy & Fuels : An American Chemical Society Journal 25 (12):5672–77. doi:10.1021/ef201196v.
  • Wang, G., J. Zhang, J. Shao, Z. Liu, G. Zhang, T. Xu, J. Guo, H. Wang, R. Xu, and H. Lin. 2016. Thermal behavior and kinetic analysis of co-combustion of waste biomass/low rank coal blends. Energy Conversion Management 124:414–26. doi:10.1016/j.enconman.2016.07.045.
  • Wang, G., J. Zhang, J. Shao, and S. Ren. 2014. Characterisation and model fitting kinetic analysis of coal/biomass co-combustion. Thermochimica acta 591:68–74. doi:10.1016/j.tca.2014.07.019.
  • Ward, C. R. 2016. Analysis, origin and significance of mineral matter in coal: An updated review. International Journal of Coal Geology 165:1–27. doi:10.1016/j.coal.2016.07.014.
  • Wei, S., G. Yan, Z. Zhang, S. Liu, and Y. Zhang. 2018. Molecular structure analysis of Jincheng anthracite coal. Journal China Coal Society 43:555–62.
  • Wu, D., G. Liu, and R. Sun. 2014. Investigation on structural and thermodynamic characteristics of perhydrous bituminous coal by Fourier transform infrared spectroscopy and thermogravimetry/Mass spectrometry. Energy & Fuels : An American Chemical Society Journal 28 (5):3024–35. doi:10.1021/ef5003183.
  • Xie, X., L. Liu, D. Lin, Y. Zhao, and P. Qiu. 2019. Influence of different state alkali and alkaline earth metal on chemical structure of Zhundong coal char pyrolyzed at elevated pressures. Fuel 254:115691. doi:10.1016/j.fuel.2019.115691.
  • Yan, T., J. Bai, L. Kong, Z. Bai, W. Li, and J. Xu. 2017. Effect of SiO2/Al2O3 on fusion behavior of coal ash at high temperature. Fuel 193:275–83. doi:10.1016/j.fuel.2016.12.073.
  • Yan, J., Z. Bai, W. Li, and J. Bai. 2014. Direct liquefaction of a Chinese brown coal and CO2 gasification of the residues. Fuel 136:280–86. doi:10.1016/j.fuel.2014.07.054.
  • Yan, J., Z. Lei, Z. Li, Z. Wang, S. Ren, S. Kang, X. Wang, and H. Shui. 2020. Molecular structure characterization of low-medium rank coals via XRD, solid state 13C NMR and FTIR spectroscopy. Fuel 268:117038. doi:10.1016/j.fuel.2020.117038.
  • Zhang, L., S. Hu, Q. Chen, L. Xiao, S. S. A. Syed-Hassan, L. Jiang, Y. Wang, S. Su, and J. Xiang. 2017. Molecular structure characterization of the tetrahydrofuran-microwave-extracted portions from three Chinese low-rank coals. Fuel 189:178–85. doi:10.1016/j.fuel.2016.10.082.
  • Zhang, W., P. Wang, S. Sun, Y. Zhao, H. Zhao, T. Yan, and J. Wu. 2017. Effects of demineralization methods on structure and reactivity of Zhundong subbituminous coal. Journal Chemical Industry Engineering 68:3291–300.
  • Zhang, Q., F. Zeng, and S. Zhang. 2011. FT-IR study on structure evolution of middle maturate coals. Journal China Coal Society 36:481–86.
  • Zhang, D., Z. Zong, J. Liu, Y. Wang, L. Yu, J. Lv, T. Wang, X. Wei, Z. Wei, and L. Yan. 2015. Catalytic hydroconversion of Geting bituminous coal over FeNi–S/γ-Al2O3. Fuel Processing Technology 133:195–201. doi:10.1016/j.fuproc.2015.01.045.
  • Zhao, P., W. Li, J. Liang, and X. Gu. 2015. Status and development suggestion of low rank coal upgrading technologies. Clean Coal Technology 21:37–40.
  • Zhao, Y., M. Li, F. Zeng, H. Liang, Y. Zhao, J. Xiang, and E. Li. 2018. FTIR study of structural characteristics of different chemical components from Yimin Lignite. Journal China Coal Society 43:546–54.
  • Zhao, H., B. Wang, Y. Li, Q. Song, Y. Zhao, R. Zhang, Y. Hu, S. Liu, X. Wang, and X. Shu. 2018. Effect of chemical fractionation treatment on structure and characteristics of pyrolysis products of Xinjiang long flame coal. Fuel 234:1193–204. doi:10.1016/j.fuel.2018.08.015.
  • Zheng, Q. Y., W. T. Zhang, F. X. Zeng, H. Kanda, M. Goto, H. Kanda, and M. Goto. 2020. Room-temperature extraction of direct coal liquefaction residue by liquefied dimethyl ether. Fuel 262:116528. doi:10.1016/j.fuel.2019.116528.
  • Zhou, Q. 2016. Status and improvement approach of low coal upgrading technologies. Clean Coal Technology 22:23–30.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.