83
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comparative design-point and yearly advanced exergoenvironmental analyses of a solar-biomass organic Rankine cycle power plant

&
Pages 10433-10449 | Received 18 Apr 2022, Accepted 18 Oct 2022, Published online: 30 Nov 2022

References

  • Açikkalp, E., H. Aras, and A. Hepbasli. 2014.Advanced exergoenvironmental assessment of a natural gas-fired electricity generating facility. Energy Conversion and Management 81: 112–19.doi: 10.1016/j.enconman.2014.02.011
  • Açikkalp, E., A. Hepbasli, C. T. Yucer, and T. H. Karakoc. 2015.Advanced exergoenvironmental assessment of a building from the primary energy transformation to the environment. Energy and Buildings 89: 1–8.doi: 10.1016/j.enbuild.2014.12.020
  • Ahmed, R., V. Sreeram, Y. Mishra, and M. D. Arif. 2020.A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization. Renewable and Sustainable Energy Reviews 124: 109792.doi: 10.1016/j.rser.2020.109792
  • Alibaba, M., R. Pourdarbani, M. H. Khoshgoftar Manesh, I. Herrera-Miranda, I. Gallardo-Bernal, and J. L. Hernández-Hernández. 2020. Conventional and Advanced Exergy-Based Analysis of Hybrid Geothermal–Solar Power Plant Based on ORC Cycle. Applied Sciences 10 (15):5206. doi:10.3390/app10155206.
  • Boyano, A., T. Morosuk, A. M. Blanco-Marigorta, and G. Tsatsaronis. 2012. Conventional and advanced exergoenvironmental analysis of a steam methane reforming reactor for hydrogen production. Journal of Cleaner Production 20 (1):152–60. doi:10.1016/j.jclepro.2011.07.027.
  • Cau, G., and D. Cocco. 2014.Comparison of medium-size concentrating solar power plants based on parabolic trough and linear Fresnel collectors. Energy Procedia 45: 101–10.doi: 10.1016/j.egypro.2014.01.012
  • Cavalcanti, E. J. C., M. Carvalho, and D. R. S. da Silva. 2020.Energy, exergy and exergoenvironmental analyses of a sugarcane bagasse power cogeneration system. Energy Conversion and Management 222: 113232.doi: 10.1016/j.enconman.2020.113232
  • Cavalcanti, E. J. C., M. Carvalho, and J. L. Jonathan. 2019. Exergoenvironmental results of a eucalyptus biomass-fired power plant. Energy 189:116188. doi:10.1016/j.energy.2019.116188.
  • Dincer, I., and M. A. Rosen. 2013. Exergy. Oxford: Elsevier Ltd. ISBN: 9780080970899.
  • Goedkoop, M., and R. Spriensma. 2001. The Eco-indicator 99 - a damage oriented method for Life Cycle Impact Assessment.
  • Hong, X., J. Chen, H. Lyu, D. Sheng, W. Li, and H. Li. 2018.Advanced exergoenvironmental evaluation for a coal-fired power plant of near-zero air pollutant emission. Applied Thermal Engineering 128: 1139–50.doi: 10.1016/j.applthermaleng.2017.08.068
  • Jadidi, E., M. H. Khoshgoftar Manesh, M. Delpisheh, and V. C. Onishi. 2021. Advanced exergy, exergoeconomic, and exergoenvironmental analyses of integrated solar-assisted gasification cycle for producing power and steam from heavy refinery fuels. Energies 14 (24):8409. doi:10.3390/en14248409.
  • Kelly, S., G. Tsatsaronis, and T. Morosuk. 2009. Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts. Energy 34 (3):384–91. doi:10.1016/J.ENERGY.2008.12.007.
  • Khoshgoftar Manesh, M. H., and E. Jadidi. 2020. Conventional and advanced exergy, exergoeconomic and exergoenvironmental analysis of a biomass integrated gasification combined cycle plant. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–22. doi:10.1080/15567036.2020.1752856.
  • Kotas, T. J. 1985. The exergy method of thermal plant analysis. London: Butterworths.
  • Lillo, D., C. Salazar, M. Jaime, and C. Chávez. 2022.Perceptions of problems and preferences for solutions: The case of poor air quality in central-southern Chile. Energy for Sustainable Development 66: 79–91.doi: 10.1016/j.esd.2021.10.011
  • Manesh, M. H. K., R. S. Ghadikolaei, H. V. Modabber, and V. C. Onishi. 2021. Integration of a combined cycle power plant with med-ro desalination based on conventional and advanced exergy, exergoeconomic, and exergoenvironmental analyses. Processes 9:1–29. doi:10.3390/pr9010059.
  • Meteonorm: Meteonorm Software. (n.d.). accessed October 24, 2018. https://www.meteonorm.com/en/product/productpage/meteonorm-software.
  • Meyer, L., G. Tsatsaronis, J. Buchgeister, and L. Schebek. 2009. Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems. Energy 34 (1):75–89. doi:10.1016/j.energy.2008.07.018.
  • Modi, A., F. Bühler, J. G. Andreasen, and F. Haglind. 2017.A review of solar energy based heat and power generation systems. Renewable and Sustainable Energy Reviews 67: 1047–64.doi: 10.1016/J.RSER.2016.09.075
  • Mohaghegh, M. R., M. Heidari, S. Tasnim, A. Dutta, and S. Mahmud. 2021. Latest advances on hybrid solar–biomass power plants. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–24. doi:10.1080/15567036.2021.1887974.
  • Mortazavi, A., and M. Ameri. 2018.Conventional and advanced exergy analysis of solar flat plate air collectors. Energy 142: 277–88.doi: 10.1016/j.energy.2017.10.035
  • Oyekale, J., F. Heberle, M. Petrollese, D. Brüggemann, and G. Cau. 2019.Biomass retrofit for existing solar organic Rankine cycle power plants: Conceptual hybridization strategy and techno-economic assessment. Energy Conversion and Management 196: 831–45.doi: 10.1016/j.enconman.2019.06.064
  • Oyekale, J., M. Petrollese, and G. Cau. 2020.Modified auxiliary exergy costing in advanced exergoeconomic analysis applied to a hybrid solar-biomass organic Rankine cycle plant. Applied Energy 268: 114888.doi: 10.1016/j.apenergy.2020.114888
  • Oyekale, J., M. Petrollese, F. Heberle, D. Brüggemann, and G. Cau. 2020.Exergetic and integrated exergoeconomic assessments of a hybrid solar-biomass organic Rankine cycle cogeneration plant. Energy Conversion and Management 215: 112905.doi: 10.1016/j.enconman.2020.112905
  • Pantaleo, A. M., S. M. Camporeale, A. Miliozzi, V. Russo, N. Shah, and C. N. Markides. 2017.Novel hybrid CSP-biomass CHP for flexible generation: Thermo-economic analysis and profitability assessment. Applied Energy 204: 994–1006.doi: 10.1016/j.apenergy.2017.05.019
  • Petela, R. 2012.Exergy of Heat Radiation. Journal of Heat Transfer 86: 187.doi: 10.1115/1.3687092
  • Petrakopoulou, F., G. Tsatsaronis, and T. Morosuk. 2012. Advanced exergoenvironmental analysis of a near-zero emission power plant with chemical looping combustion. Environmental Science & Technology 46 (5):3001–07. doi:10.1021/es203430b.
  • Petrakopoulou, F., G. Tsatsaronis, T. Morosuk, and C. Paitazoglou. 2012. Environmental evaluation of a power plant using conventional and advanced exergy-based methods. Energy 45 (1):23–30. doi:10.1016/j.energy.2012.01.042.
  • Petrollese, M., G. Cau, and D. Cocco. 2018. The Ottana solar facility: Dispatchable power from small-scale CSP plants based on ORC systems. Renewable Energy. doi:10.1016/j.renene.2018.07.013.
  • Petrollese, M., J. Oyekale, V. Tola, D. Cocco, Optimal ORC configuration for the combined production of heat and power utilizing solar energy and biomass. 2018. ECOS 2018 - Proceeding 31st International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems June 17th - 21st Guimarães, Portugal.
  • Pina, E. A., M. A. Lozano, L. M. Serra, A. Hernández, and A. Lázaro. 2021.Design and thermoeconomic analysis of a solar parabolic trough – ORC – Biomass cooling plant for a commercial center. Solar Energy 215: 92–107.doi: 10.1016/j.solener.2020.11.080
  • Răboacă, M. S., G. Badea, A. Enache, C. Filote, G. Răsoi, M. Rata, A. Lavric, and R.-A. Felseghi. 2019. Concentrating Solar Power Technologies. Energies 12 (6):1048. doi:10.3390/en12061048.
  • Rungasamy, A. E., K. J. Craig, and J. P. Meyer. 2019.Comparative study of the optical and economic performance of etendue-conserving compact linear Fresnel reflector concepts. Solar Energy 181: 95–107.doi: 10.1016/J.SOLENER.2019.01.081
  • Stevović, I., D. Mirjanić, and S. Stevović. 2019.Possibilities for wider investment in solar energy implementation. Energy 180: 495–510.doi: 10.1016/J.ENERGY.2019.04.194
  • Tsatsaronis, G. 2008.Recent developments in exergy analysis and exergoeconomics. International Journal of Exergy 5: 489–99.doi: 10.1504/IJEX.2008.020822
  • Tsatsaronis, G., T. Morosuk. 2009. A general exergy-based method for combining a cost analysis with an environmental impact analysis. Part II - Application to a cogeneration system. ASME International Mechanical Engineering Congress and Exposition Proceedings, pp. 463–69. doi:10.1115/IMECE2008-67219.
  • Tsatsaronis, G., and M. H. Park. 2002. On avoidable and unavoidable exergy destructions and investment costs in thermal systems. Energy Conversion and Management 43 (9–12):1259–70. doi:10.1016/S0196-8904(02)00012-2.
  • Yürüsoy, M., and A. Keçebaş. 2017.Advanced exergo-environmental analyses and assessments of a real district heating system with geothermal energy. Applied Thermal Engineering 113: 449–59.doi: 10.1016/J.APPLTHERMALENG.2016.11.054
  • Zsiborács, H., N. H. Baranyai, L. Zentkó, A. Mórocz, I. Pócs, K. Máté, and G. Pintér. 2020. Electricity market challenges of photovoltaic and energy storage technologies in the European Union: Regulatory challenges and responses. Applied Sciences 10 (4):1472. doi:10.3390/app10041472.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.