122
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Influence of small amount of hydrogen fuel on spark-ignition engine characteristics through H-CNG fuel blend and its comparative study

ORCID Icon, , , ORCID Icon, ORCID Icon &
Pages 10518-10532 | Received 23 Mar 2022, Accepted 17 Oct 2022, Published online: 08 Dec 2022

References

  • Afkhami, B., A. Kakaee, and K. Pouyan. 2012. Studying engine cold start characteristics at low temperatures for CNG and HCNG by investigating low-temperature oxidation. Energy Conversion and Management 64:122–28. doi:10.1016/j.enconman.2012.04.016.
  • Aslam, M. U., H. H. Masjuki, M. A. Kalam, H. Abdesselam, T. M. I. Mahlia, and M. A. Amalina. 2006. An experimental investigation of CNG as an alternative fuel for a retrofitted gasoline vehicle. Fuel 85 (5–6):717–24. doi:10.1016/j.fuel.2005.09.004.
  • Bhurat, K. S., T. Banerjee, J. K. Pandey, and S. S. Bhurat. 2021. A lab fermenter level study on anaerobic hydrogen fermentation using potato peel waste: Effect of pH, temperature, and substrate pre-treatment. Journal of Material Cycles and Waste Management 23 (4):1617–25. doi:10.1007/s10163-021-01242-3.
  • Bhurat, S. S., S. Pandey, and V. Chintala. 2021. Combined effect of external mixture formation and cooled exhaust gas recirculation on engine performance and emissions characteristics of partially pre‐mixed charged compression ignition engine. Environmental Progress & Sustainable Energy 40 (1):e13470. doi:10.1002/ep.13470.
  • Greenbaum, D. S. 2013. Sources of air pollution: Gasoline and diesel engines. Air Pollution and Cancer 49–62.
  • Hao, D., R. K. Mehra, S. Luo, Z. Nie, X. Ren, and F. Ma. 2020. Experimental study of hydrogen enriched compressed natural gas (HCNG) engine and application of support vector machine (SVM) on prediction of engine performance at specific condition. International Journal of Hydrogen Energy 45 (8):5309–25. doi:10.1016/j.ijhydene.2019.04.039.
  • Heywood, J. B. Internal combustion engine fundamentals, Mcgraw-hill: New York. 1988; Vol. 930.
  • Hoang, A. T., Z. Huang, S. Nižetić, A. Pandey, X. P. Nguyen, R. Luque, H. C. Ong, Z. Said, T. H. Le, and V. V. Pham. 2022. Characteristics of hydrogen production from steam gasification of plant-originated lignocellulosic biomass and its prospects in Vietnam. International Journal of Hydrogen Energy 47 (7):4394–425. doi:10.1016/j.ijhydene.2021.11.091.
  • India: composition of 18 percent hydrogen blended CNG in Ashok Leyland light duty vehicles 2017. https://www.statista.com/statistics/941277/india-composition-of-18-percent-hydrogen-blended-cng-in-ashok-leyland-light-duty-vehicles/. Accessed on [30 Jan 2022];
  • Jahirul, M. I., H. H. Masjuki, R. Saidur, M. A. Kalam, M. H. Jayed, and M. A. Wazed. 2010. Comparative engine performance and emission analysis of CNG and gasoline in a retrofitted car engine. Applied Thermal Engineering 30 (14–15):2219–26. doi:10.1016/j.applthermaleng.2010.05.037.
  • Khandal, S. V., Ü. Ağbulut, A. Afzal, M. Sharifpur, K. A. Razak, and N. Khalilpoor. 2022. Influences of hydrogen addition from different dual-fuel modes on engine behaviors. Energy Science & Engineering 10 (3):881–91. doi:10.1002/ese3.1065.
  • Lather, R. S., and L. Das. 2019. Performance and emission assessment of a multi-cylinder SI engine using CNG & HCNG as fuels. International Journal of Hydrogen Energy 44 (38):21181–92. doi:10.1016/j.ijhydene.2019.03.137.
  • Le, A. T., D. Q. Tran, T. T. Tran, A. T. Hoang, and V. V. Pham. 2020. Performance and combustion characteristics of a retrofitted CNG engine under various piston-top shapes and compression ratios. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–17. doi:10.1080/15567036.2020.1804016.
  • Melaika, M., G. Herbillon, and P. Dahlander. 2021. Spark ignition engine performance, standard emissions and particulates using GDI, PFI-CNG and DI-CNG systems. Fuel 293:120454. doi:10.1016/j.fuel.2021.120454.
  • Nanthagopal, K., R. Subbarao, T. Elango, P. Baskar, and K. Annamalai. 2011. Hydrogen enriched compressed natural gas (HCNG): A futuristic fuel for internal combustion engines. Thermal Science 15 (4):1145–54. doi:10.2298/TSCI100730044N.
  • Nitnaware, P., and J. Suryawanshi. 2016. Effects of MBT spark timing on performance emission and combustion characteristics of SI engine using hydrogen-CNG blends. International Journal of Hydrogen Energy 41 (1):666–74. doi:10.1016/j.ijhydene.2015.11.074.
  • Pandey, V., S. Guluwadi, and G. H. Tafesse. 2022. Performance and emission study of low HCNG fuel blend in SI engine with fixed ignition timing. Cogent Engineering 9 (1):2010925. doi:10.1080/23311916.2021.2010925.
  • Park, C., S. Lee, C. Kim, and Y. Choi. 2017. A comparative study of lean burn and exhaust gas recirculation in an HCNG-fueled heavy-duty engine. International Journal of Hydrogen Energy 42 (41):26094–101. doi:10.1016/j.ijhydene.2017.08.170.
  • Prasad, R. K., and A. K. Agarwal. 2021. Experimental evaluation of laser ignited hydrogen enriched compressed natural gas fueled supercharged engine. Fuel 289:119788. doi:10.1016/j.fuel.2020.119788.
  • Rao, A., Y. Liu, and F. Ma. 2022. Study of NOx emission for hydrogen enriched compressed natural along with exhaust gas recirculation in spark ignition engine by Zeldovich’mechanism, support vector machine and regression correlation. Fuel 318:123577. doi:10.1016/j.fuel.2022.123577.
  • Rao, A., Z. Wu, R. K. Mehra, H. Duan, and F. Ma. 2021. Effect of hydrogen addition on combustion, performance and emission of stoichiometric compressed natural gas fueled internal combustion engine along with exhaust gas recirculation at low, half and high load conditions. Fuel 304:121358. doi:10.1016/j.fuel.2021.121358.
  • Sagar, S., and A. K. Agarwal. 2018. Knocking behavior and emission characteristics of a port fuel injected hydrogen enriched compressed natural gas fueled spark ignition engine. Applied Thermal Engineering 141:42–50. doi:10.1016/j.applthermaleng.2018.05.102.
  • Sastry, G. R., S. K. Gugulothu, L. B. B. Raju, J. K. Panda, S. S. Bhurat, and B. Burra. 2022. Influence of Exhaust Gas Recirculation on Performance, Combustion, and Emission Characteristics of a Common Rail Direct Injection Diesel Engine Fueled by Diesel/Higher Alcohol Blends. Journal of Thermal Science and Engineering Applications 14 (10):101001. doi:10.1115/1.4053599.
  • Singh, A. P., A. Pal, and A. K. Agarwal. 2016. Comparative particulate characteristics of hydrogen, CNG, HCNG, gasoline and diesel fueled engines. Fuel 185:491–99. doi:10.1016/j.fuel.2016.08.018.
  • Suarez-Bertoa, R., A. A. Zardini, H. Keuken, and C. Astorga. 2015. Impact of ethanol containing gasoline blends on emissions from a flex-fuel vehicle tested over the Worldwide Harmonized Light duty Test Cycle (WLTC). Fuel 143:173–82. doi:10.1016/j.fuel.2014.10.076.
  • Suhel, A., A. R. Norwazan, M. R. A. Rahman, and K. A. B. Ahmad. 2021. Dataset for influence of CNG and HCNG on engine performance and emission parameters at diverse injection pressure. Data in Brief 35:106838. doi:10.1016/j.dib.2021.106838.
  • Wongwuttanasatian, T., S. Jankoom, and K. Velmurugan. 2022. Experimental performance investigation of an electronic fuel injection-SI engine fuelled with HCNG (H2+ CNG) for cleaner transportation. Sustainable Energy Technologies and Assessments 49:101733. doi:10.1016/j.seta.2021.101733.
  • Yaliwal, V. S., N. R. Banapurmath, M. E. M. Soudagar, A. Afzal, and P. Ahmadi. 2022. Effect of manifold and port injection of hydrogen and exhaust gas recirculation (EGR) in dairy scum biodiesel - low energy content gas-fueled CI engine operated on dual fuel mode. International Journal of Hydrogen Energy 47 (10):6873–97. doi:10.1016/j.ijhydene.2021.12.023.
  • Yontar, A. A., and Y. Doğu. 2020. Effects of equivalence ratio and CNG addition on engine performance and emissions in a dual sequential ignition engine. International Journal of Engine Research 21 (6):1067–82. doi:10.1177/1468087419834190.
  • Yuvenda, D., B. Sudarmanta, A. Wahjudi, and O. Muraza. 2020. Improved combustion performances and lowered emissions of CNG-diesel dual fuel engine under low load by optimizing CNG injection parameters. Fuel 269:117202. doi:10.1016/j.fuel.2020.117202.
  • Zheng, J. J., J. H. Wang, B. Wang, and Z. H. Huang. 2009. Effect of the compression ratio on the performance and combustion of a natural-gas direct-injection engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 223 (1):85–98. doi:10.1243/09544070JAUTO976.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.