58
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Material processing conditions effect on the thermokinetics of end of life tyres

ORCID Icon &
Pages 10550-10568 | Received 09 Jun 2022, Accepted 23 Nov 2022, Published online: 11 Dec 2022

References

  • Ahmaruzzaman, M., and D. K. Sharma. 2007. Coprocessing of Petroleum Vacuum Residue with Plastics, Coal, and Biomass and Its Synergistic Effects. Energy & Fuels 21:891–97. doi:10.1021/ef060102w.
  • Alkhatib, R., K. Loubar, S. Awad, E. Mounif, and M. Tazerout. 2015. Effect of heating power on the scrap tires pyrolysis derived oil. Journal of Analytical and Applied Pyrolysis 116:10–17. doi:10.1016/j.jaap.2015.10.014.
  • Al-Salem, S. M. 2020. Valorisation of End of Life Tyres (ELTs) in a Newly Developed Pyrolysis Fixed-Bed Batch Process. Process Safety & Environmental Protection 138:167–75. doi:10.1016/j.psep.2020.03.020.
  • Al-Salem, S. M., 2021a. Pyrolysis of end of life tyres reclaimed from lorry trucks. Part I: Oil recovery and characterisation. InProc: Materials Characterisation 2021 (Wessex Institute for Technology - WIT). 10th International Conference on Computational Methods and Experiments in Material and Contact Characterisation, Madrid, Spain. Materials and Contact Characterisation X, pp. 107–12. 7-9 July 2021 Materials and Contact Characterisation X.
  • Al-Salem, S. M., 2021b. Pyrolysis of end of life tyres reclaimed from lorry trucks. Part II: Analysis of recovered char. In Proc: Materials Characterisation 2021 (Wessex Institute for Technology - WIT). 10th International Conference on Computational Methods and Experiments in Material and Contact Characterisation, Madrid, Spain. Materials and Contact Characterisation X, pp. 113–17. 7-9 July 2021 Materials and Contact Characterisation X.
  • Al-Salem, S. M. 2022. Slow Pyrolysis of End of Life Tyres (ELTs) Grades: Effect of Temperature on Pyro-Oil Yield and Quality. Journal of environmental management 301:113863. doi:10.1016/j.jenvman.2021.113863.
  • Al-Salem, S. M., M. H. Behbehani, A. Al-Hazza’a, J. C. Arnold, S. M. Alston, A. A. Al-Rowaih, F. Asiri, S. F. Al-Rowaih, and H. Karam. 2019a. Study of the Degradation Profile for Virgin Linear Low Density Polyethylene (LLDPE) and Polyolefin (PO) Plastic Waste Blends. Journal of Material Cycles & Waste Management 21 (5):1106–22. doi:10.1007/s10163-019-00868-8.
  • Al-Salem, S. M., A. Bumajdad, A. R. Khan, B. K. Sharma, S. R. Chandrasekaran, F. A. Al-Turki, F. H. Jassem, and A. T. Al-Dhafeeri. 2018. Non-isothermal Degradation Kinetics of Virgin Linear Low Density Polyethylene (LLDPE) and Biodegradable Polymer Blends. Journal of Polymer Research 25 (5):111. doi:10.1007/s10965-018-1513-7.
  • Al-Salem, S. M., and A. R. Khan. 2014. On the degradation kinetics of poly(ethylene terephthalate) (PET)/poly(methyl methacrylate) (PMMA) blends in dynamic thermogravimetry. Polymer Degradation & Stability 104:28–32. doi:10.1016/j.polymdegradstab.2014.03.024.
  • Al-Salem, S. M., P. Lettieri, and J. Baeyens. 2009. Kinetics and product distribution of end of life tyres (ELTs) pyrolysis: A novel approach in polyisoprene and SBR thermal cracking. Journal of Hazardous Materials 172 (2–3):1690–94. doi:10.1016/j.jhazmat.2009.07.127.
  • Al-Salem, S. M., B. K. Sharma, A. R. Khan, J. C. Arnold, S. M. Alston, S. R. Chandrasekaran, and A. T. Al- Dhafeeri. 2017. Thermal Degradation Kinetics of Virgin Polypropylene (PP) and PP with Starch Blends Exposed to Natural Weathering. Industrial & Engineering Chemistry Research 56 (18):5210–20. doi:10.1021/acs.iecr.7b00754.
  • Al-Salem, S. M., H. H. Sultan, H. J. Karam, and A. T. Al-Dhafeeri. 2019b. Determination of Biodegradation Rate of Commercial Oxo-Biodegradable Polyethylene Film Products Using ASTM D 5988. Journal of Polymer Research 26:157. doi:10.1007/s10965-019-1822-5.
  • Antoniou, N., and A. Zabaniotou. 2013. Features of an efficient and environmentally attractive used tyres pyrolysis with energy and material recovery. Renewable and Sustainable Energy Reviews 20:539–58. doi:10.1016/j.rser.2012.12.005.
  • Antoniou, N., and A. Zabaniotou. 2015. Experimental proof of concept for a sustainable End of Life Tyres pyrolysis with energy and porous materials production. Journal of Cleaner Production 101:323–36. doi:10.1016/j.jclepro.2015.03.101.
  • Arabiourrutia, M., G. Lopez, R. Aguado, J. Bilbao, and M. Olazar. 2019. Coupling gas flow pattern and kinetics for tyre pyrolysis modelling. Chemical Engineering Science 201:362–72. doi:10.1016/j.ces.2019.02.025.
  • Arabiourrutia, M., G. Lopez, M. Artetxe, J. Alvarez, J. Bilbao, and M. Olazar. 2020. Waste tyre valorization by catalytic pyrolysis - a review. Renewable and Sustainable Energy Reviews 129:109932. doi:10.1016/j.rser.2020.109932.
  • Aydin, H., and C. Ilkilic. 2012. Optimization of fuel production from waste vehicle tires by pyrolysis and resembling to diesel fuel by various desulfurization methods. Fuel 102:605–12. doi:10.1016/j.fuel.2012.06.067.
  • Berrueco, C., E. Esperanza, F. J. Mastral, J. Ceamanos, and P. Garcia-Bacaicoa. 2005. Pyrolysis of waste tyres in an atmospheric static-bed batch reactor: Analysis of the gases obtained. Journal of Analytical & Applied Pyrolysis 74:245–53. doi:10.1016/j.jaap.2004.10.007.
  • Biswas, S., P. Mohanty, and D. K. Sharma. 2013. Studies on synergism in the cracking and co-cracking of Jatropha oil, vacuum residue and high density polyethylene: Kinetic analysis. Fuel Processing Technology 106:673–83. doi:10.1016/j.fuproc.2012.10.001.
  • Biswas, S., and D. K. Sharma. 2014. Effect of different catalysts on the cracking of Jatropha oil. Journal of Analytical and Applied Pyrolysis 110:346–52. doi:10.1016/j.jaap.2014.10.001.
  • Biswas, S., and D. K. Sharma. 2021. A review on the co-processing of biomass with other fuels sources. International Journal of Green Energy 18 (8). doi: 10.1080/15435075.2021.1880914.
  • Blaine, R. L., and H. E. Kissinger. 2012. Homer Kissinger and the Kissinger equation. Thermochimica Acta 540:1–6. doi:10.1016/j.tca.2012.04.008.
  • Campbell-Johnston, K., M. Calisto Friant, K. Thapa, D. Lakerveld, and W. J. V. Vermeulen. 2020. How circular is your tyre: Experiences with extended producer responsibility from a circular economy perspective. Journal of Cleaner Production 270:122042. doi:10.1016/j.jclepro.2020.122042.
  • Chen, J. H., K. S. Chen, and L. Y. Tong. 2001. On the pyrolysis kinetics of scrap automotive tires. Journal of Hazardous Materials B84:43–55. doi:10.1016/S0304-3894(01)00180-7.
  • Cherop, P. T., S. L. Kiambi, and P. Musonge, 2017. Kinetics of granulated scrap tyre pyrolysis via thermogravimetry, in: Proceedings of the Sustainable Research and Innovation Conference, JKUAT Main Campus, Kenya, 3-5 May.
  • Cheung, K. Y., K. L. Lee, K. L. Lam, T. Y. Chan, C. W. Lee, and C. W. Hui. 2011. Operation strategy for multi-stage pyrolysis. Journal of Analytical & Applied Pyrolysis 91:165–82. doi:10.1016/j.jaap.2011.02.004.
  • Danon, B., A. de Villiers, and J. F. Görgens. 2015b. Elucidation of the different devolatilisation zones of tyre rubber pyrolysis using TGA-MS. Thermochimica acta 614:59–61. doi:10.1016/j.tca.2015.05.012.
  • Danon, B., N. M. Mkhize, P. van der Gryp, and J. F. Görgens. 2015a. Combined model-free and model-based devolatilisation kinetics of tyre rubbers. Thermochimica Acta 601:45–53. doi:10.1016/j.tca.2014.12.003.
  • Dwivedi, C., S. Manjare, and S. K. Rajan. 2020. Recycling of waste tire by pyrolysis to recover carbon black: Alternative & environment-friendly reinforcing filler for natural rubber compounds. Composites Part B Engineering 200:108346. doi:10.1016/j.compositesb.2020.108346.
  • Ferdous, W., A. Manalo, R. Siddique, P. Mendis, Y. Zhuge, H. S. Wong, W. Lokuge, T. Aravinthan, and P. Schubel. 2021. Recycling of landfill wastes (tyres, plastics and glass) in construction - a review on global waste generation, performance, application and future opportunities, Resources. Conservation & Recycling 173:105745. doi:10.1016/j.resconrec.2021.105745.
  • Fernandez, A., P. Sette, M. Echegaray, J. Soria, D. Salvatori, G. Mazza, and R. Rodriguez. Clean recovery of phenolic compounds, pyro-gasification thermokinetics, and bioenergy potential of spent agro-industrial bio-wastes. Biomass Conversion and Biorefinery. doi:10.1007/s13399-021-02197-z.
  • Formela, K. 2021. Sustainable development of waste tires recycling technologies e recent advances, challenges and future trends. Advanced Industrial and Engineering Polymer Research 4:209–22. doi:10.1016/j.aiepr.2021.06.004.
  • Gao, N., F. Wang, C. Quan, L. Santamaria, G. Lopez, and P. T. Williams. 2022. Tire pyrolysis char: Processes, properties, upgrading and applications. Progress in Energy and Combustion Science 93:101022. doi:10.1016/j.pecs.2022.101022.
  • Grieco, E., M. Bernardi, and G. Baldi. 2008. Styrene–butadiene rubber pyrolysis: Products, kinetics, modelling. Journal of Analytical & Applied Pyrolysis 82 (2):304–11. doi:10.1016/j.jaap.2008.05.004.
  • Hita, I., M. Arabiourrutia, M. Olazar, J. Bilbao, J. M. Arandes, and P. C. Sanchez. 2016. Opportunities and barriers for producing high quality fuels from the pyrolysis of scrap tires. Renewable and Sustainable Energy Reviews 56:745–59. doi:10.1016/j.rser.2015.11.081.
  • Hoang, T., T. H. Nguyen, and H. P. Nguyen. 2020. Scrap tire pyrolysis as a potential strategy for waste management pathway: A review. doi:10.1080/15567036.2020.1745336.
  • Jansen, A. A., I. J. van der Walt, and P. L. Crouse. 2022. Waste-tyre pyrolysis and gasification via the reverse boudouard reaction: Derivation of empirical kinetics from TGA data. Thermochimica Acta 708:179104. doi:10.1016/j.tca.2021.179104.
  • Januszewicz, K., P. Kazimierski, W. Kosakowski, and W. M. Lewandowski. 2020. Waste tyres pyrolysis for obtaining limonene. Materials 13 (6):1359. doi:10.3390/ma13061359.
  • Joohari, I. B., and F. Giustozzi. 2021. Waste tyres crumb rubber as a sustainability enhancer for polymer-modified and hybrid polymer-modified bitumen. International Journal of Pavement Engineering 23 (12):4357–71. doi:10.1080/10298436.2021.1943745.
  • Knapčíková, L., M. Herzog, and P. Oravec. 2010. Material characterization of composite materials from used tires. Výrobné inžinierstvo 4:31–34.
  • Lam, K. -L., C. -W. Lee, and C. -W. Hui. 2010. Multi-stage waste tyre pyrolysis: An optimisation approach. Chemical Engineering Transactions 21:853–58.
  • Menares, T., J. Herrera, R. Romero, P. Osorio, and L. E. Arteaga-Pérez. 2020. Waste tires pyrolysis kinetics and reaction mechanisms explained by TGA and Py-GC/MS under kinetically-controlled regime. Waste Management 102:21–29. doi:10.1016/j.wasman.2019.10.027.
  • Mkhize, N. M., B. Danon, P. van der Gryp, and J. F. Görgens. 2019. Kinetic study of the effect of the heating rate on the waste tyre pyrolysis to maximise limonene production. Chemical Engineering Research & Design 152:363–71. doi:10.1016/j.cherd.2019.09.036.
  • Napoli, A., Y. Soudais, D. Lecomte, and S. Castillo. 1997a. Scrap tyre pyrolysis: Are the effluents valuable products? Journal of Analytical & Applied Pyrolysis 40-41:373–82. doi:10.1016/S0165-2370(97)00011-9.
  • Napoli, A., Y. Soudais, D. Lecomte, and S. Castillo, 1997b. Scrap tire pyrolysis: Experiment and modelling. Annual North American waste-to-energy conference and exhibition, Research Triangle Park, NC (United States), 22-25 April, Part of Proceedings of fifth annual North American waste-to-energy conference; 1102 p.
  • Ojeda, T., A. Freitas, E. Dalmolin, M. D. Pizzol, L. Vignol, J. Melnik, R. Jacques, F. Bento, and F. Camargo. 2009. Abiotic and biotic degradation of oxo-biodegradable foamed polystyrene. Polymer Degradation & Stability 94:2128–33. doi:10.1016/j.polymdegradstab.2009.09.012.
  • Osorio-Vargas, P., C.H. Campos, C.C. Torres, C. Herrera, K. Shanmugaraj, T.M. Bustamante, M. Diaz de Poletto, A.J. Zattera, and R.M.C. Santana. 2012. Thermal decomposition of wood: Kinetics and degradation mechanisms. Bioresource Technology 126:7–12.
  • Poletto, M., A. J. Zattera, and R. M. C. Santana. 2012. Thermal decomposition of wood: Kinetics and degradation mechanisms. Bioresource Technology 126:7–12. doi:10.1016/j.biortech.2012.08.133.
  • Qiu, W., A. Habenschuss, and B. Wunderlich. 2007. The phase structures of Nylon 6.6 as studied by temperature-modulated calorimetry and their link to X-ray structure and molecular motion. Polymer 48:1641–50. doi:10.1016/j.polymer.2007.01.024.
  • Rajkumar, P., and M. Somasundaram. 2022. Pyrolysis of residual tyres: Exergy and kinetics of pyrogas. South African Journal of Chemical Engineering 42:53–60. doi:10.1016/j.sajce.2022.07.005.
  • Rijo, B., A. P. S. Dias, and L. Wojnicki. 2022. Catalyzed pyrolysis of scrap tires rubber. Journal of Environmental Chemical Engineering 10 (1):107037. doi:10.1016/j.jece.2021.107037.
  • Saffe, A., A. Fernandez, M. Echegaray, G. Mazza, and R. Rodriguez. 2019. Pyrolysis kinetics of regional agro-industrial wastes using isoconversional methods. Biofuels 10(2): doi:10.1080/17597269.2017.1316144. 2019.
  • Salaudeen, S., S. M. Al-Salem, M. Heidari, B. Acharya, and A. Dutta. 2019. Eggshell as a carbon dioxide sorbent: Kinetics of the calcination and carbonation reactions. Energy & Fuels 33 (5):4474–86. doi:10.1021/acs.energyfuels.9b00072.
  • Senneca, O., P. Salatino, and R. Chirone. 1999. A fast heating-rate thermogravimetric study of the pyrolysis of scrap tyres. Fuel 78:1575–81. doi:10.1016/S0016-2361(99)00087-3.
  • Shahi, A., C. Dwivedi, and S. Manjare. 2022. Experimental and theoretical investigation on pyrolysis of various sections of the waste tire and its components. Chemical Engineering Research & Design 179:66–76. doi:10.1016/j.cherd.2021.12.022.
  • Torres-Sciancalepore, R., A. Fernandez, D. Asensio, M. Riveros, M. PaulaFabani, G. Fouga, R. Rodriguez, and G. Mazza. 2022. Kinetic and thermodynamic comparative study of quince bio-waste slow pyrolysis before and after sustainable recovery of pectin compounds. Energy Conversion and Management 252:115076. doi:10.1016/j.enconman.2021.115076.
  • Ucar, S., S. Karagoz, A. R. Ozkan, and J. Yanik. 2005. Evaluation of two different scrap tires as hydrocarbon source by pyrolysis. Fuel 84:1884–92. doi:10.1016/j.fuel.2005.04.002.
  • Unapumnuk, K., T. C. Keener, M. Lu, and S. J. Khang. 2006. Pyrolysis behavior of tire derived fuels at different temperatures and heating rates. Journal of the Air & Waste Management Association 56 (5):618–27. doi:10.1080/10473289.2006.10464481.
  • USEPA, 2016. Tire-derived fuel, United States Environmental Protection Agency Archives. Available at: https://archive.epa.gov/epawaste/conserve/materials/tires/web/html/tdf.html. (accessed on 25 April 2022).
  • Vyazovkin, S., A. K. Burnham, J. M. Criado, L. A. Pérez-Maqueda, C. Popescud, and N. Sbirrazzuoli. 2011. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica acta 520:1–19. doi:10.1016/j.tca.2011.03.034.
  • Vyazovkin, S., K. Chrissafis, M. L. Di Lorenzo, N. Koga, M. Pijolat, B. Roduit, N. Sbirrazzuoli, and J. J. Suñol. 2014. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochimica acta 590:1–23. doi:10.1016/j.tca.2014.05.036.
  • Williams, P. T. 2013. Pyrolysis of waste tyres: A review. Waste Management 33:1714–28. doi:10.1016/j.wasman.2013.05.003.
  • Williams, P. T., and R. P. Bottrill. 1995. Sulfur-polycyclic aromatic hydrocarbons in tyre pyrolysis oil. Fuel 74:736–42. doi:10.1016/0016-2361(94)00005-C.
  • Yusriah, L., S. M. Sapuan, E. S. Zainudin, and M. Mariatti. 2014. Characterization of physical, mechanical, thermal and morphological properties of agro-waste betel nut (Areca catechu) husk fibre. Journal of Cleaner Production 72:174–80. doi:10.1016/j.jclepro.2014.02.025.
  • Zedler, L., S. Wang, and K. Formela. 2022. Ground tire rubber functionalization as a promising approach for the production of sustainable adsorbents of environmental pollutants. The Science of the Total Environment 836:155636. doi:10.1016/j.scitotenv.2022.155636.
  • Zhang, J., H. Fu, Y. Liu, H. Dang, L. Ye, A. N. Conejio, and R. Xu. 2022. Review on biomass metallurgy: Pretreatment technology, metallurgical mechanism and process design. International Journal of Minerals, Metallurgy and Materials 29 (6):1133–49. doi:10.1007/s12613-022-2501-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.