91
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Effect of ZnO nanofluids on thermo-hydraulic characteristic of flow in a heated duct

ORCID Icon &
Pages 10681-10693 | Received 29 Jun 2022, Accepted 17 Nov 2022, Published online: 15 Dec 2022

References

  • Ali, B., A. Qayoum, S. Saleem, and F. Q. Mir. 2022. Synthesis and characterization of high-quality multi layered graphene by electrochemical exfoliation of graphite. Research on Engineering Structures and Materials 1–16. doi:10.17515/resm2022.384na0121.
  • Batchelor, G. K. 1977. The effect of brownian motion on the bulk stress in a suspension of spherical particles. Journal of Fluid Mechanics 83 (1):97–117. doi:10.1017/S0022112077001062.
  • Bhat, A. Y., and A. Qayoum. 2022. Viscosity of CuO nanofluids: Experimental investigation and modelling with FFBP-ANN. Thermochimica Acta 714:179267. doi:10.1016/j.tca.2022.179267.
  • Pak, B. C., and Y. I. Cho. 1998. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide. Experimental Heat Transfer 11 (2): 151–170. doi:10.1080/08916159808946559.
  • Brinkman, H. C. 1952. The Viscosity of Concentrated Suspensions and Solutions. The Journal of Chemical Physics 20 (4):571. doi:10.1063/1.1700493.
  • Chen, H., Y. Ding, and C. Tan. 2007. Rheological behaviour of nanofluids. New Journal of Physics 9 (10):367. doi:10.1088/1367-2630/9/10/367.
  • Choi, S. U. S. 1995. Enhancing thermal conductivity of fluids with nanoparticles. American Society of Mechanical Engineers Fluids Engineering Division 231:99–105.
  • Einstein, A., E. W. Woolard, and A. D. Cowper. 1928. Investigations on the theory of brownian movement. The American Mathematical Monthly 35 (6): 318. doi:10.2307/2F2298685.
  • Ekiciler, R. 2021. Effects of novel hybrid nanofluid (TiO2–cu/EG) and geometrical parameters of triangular rib mounted in a duct on heat transfer and flow characteristics. Journal of Thermal Analysis and Calorimetry 143 (2):1371–87. doi:10.1007/s10973-020-09913-3.
  • Ekiciler, R., K. Arslan, O. Turgut, and B. Kurşun. 2021. Effect of hybrid nanofluid on heat transfer performance of parabolic trough solar collector receiver. Journal of Thermal Analysis and Calorimetry 143 (2):1637–54. doi:10.1007/s10973-020-09717-5.
  • Esfe, M. H., and S. Saedodin. 2014. An experimental investigation and new correlation of viscosity of ZnO – EG nanofluid at various temperatures and different solid volume fractions. Experimental Thermal and Fluid Science 55:1–5. doi:10.1016/j.expthermflusci.2014.02.011.
  • Giwa, S. O., M. Momin, C. N. Nwaokocha, M. Sharifpur, and J. P. Meyer. 2021. Influence of nanoparticles size, per cent mass ratio, and temperature on the thermal properties of water-based MgO–zno Nanofluid: An experimental approach. Journal of Thermal Analysis and Calorimetry 143 (2):1063–79. doi:10.1007/s10973-020-09870-x.
  • Gulzar, O., A. Qayoum, and R. Gupta. 2019. Experimental study on stability and rheological behaviour of hybrid Al 2 O 3 -TiO 2 Therminol-55 Nano Fl Uids for concentrating solar collectors. Powder Technology 352:436–44. doi:10.1016/j.powtec.2019.04.060.
  • Hemmat Esfe, M., S. Saedodin, and M. Mahmoodi. 2014. Experimental studies on the convective heat transfer performance and thermophysical properties of MgO–water nanofluid under turbulent flow. Experimental Thermal and Fluid Science 52:68–78. doi:10.1016/j.expthermflusci.2013.08.023.
  • James Clerk, M. 2010. A treatise on electricity and magnetism. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511709333.
  • Jeong, J., C. Li, Y. Kwon, J. Lee, S. Hyung, and R. Yun. 2013. Particle shape effect on the viscosity and thermal conductivity of ZnO nanofluids effet de forme de particules sur la viscosite ` Nes ZnO thermique de nanofrigorige. International Journal of Refrigeration 36 (8):2233–41. doi:10.1016/j.ijrefrig.2013.07.024.
  • Kadir, B., M. Tekir, E. Gedik, K. Arslan, H. Aksu, and E. Taskesen. 2022. Hydrothermal behavior of hybrid magnetite nanofluid flowing in a pipe under Bi-Directional magnetic field with different wave types. Thermal Science and Engineering Progress 34 (May):101399. doi:10.1016/j.tsep.2022.101399.
  • Kaya, H., and K. Arslan. 2019. Numerical investigation of efficiency and economic analysis of an evacuated U-Tube solar collector with different nanofluids. Heat Mass Transfer und Stoffuebertragung 55 (3):581–93. doi:10.1007/s00231-018-2442-z.
  • Masuda, H., A. Ebata, K. Teramae, and N. Hishinuma. 1993. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles. Netsu Bussei 7 (4):227–33. doi:10.2963/jjtp.7.227.
  • Mintsa, H. A., G. Roy, C. T. Nguyen, and D. Doucet. 2009. New Temperature Dependent Thermal Conductivity Data for Water-Based Nanofluids. International Journal of Thermal Sciences 48 (2):363–71. doi:10.1016/j.ijthermalsci.2008.03.009.
  • Nwaokocha, C., M. Momin, S. Giwa, M. Sharifpur, S. M. S. Murshed, and J. P. Meyer. 2022. Experimental Investigation of Thermo-Convection Behaviour of Aqueous Binary Nanofluids of MgO-ZnO in a Square Cavity. Thermal Science and Engineering Progress 28: 101057. September 2021. doi:10.1016/j.tsep.2021.101057.
  • Rasool, A., and A. Qayoum. 2018. Numerical analysis of heat transfer and friction factor in two-pass channels with variable rib shapes. International Journal of Heat and Technology 36 (1):40–48. doi:10.18280/ijht.360106.
  • Sharifpur, M., S. O. Giwa, K. Y. Lee, H. Ghodsinezhad, and J. P. Meyer. 2021. Experimental Investigation into Natural Convection of Zinc Oxide/Water Nanofluids in a Square Cavity. Heat Transfer Engineering 42 (19–20):1675–87. doi:10.1080/01457632.2020.1818384.
  • Suganthi, K. S., N. Anusha, and K. S. Rajan. 2013. Low viscous ZnO-propylene glycol nanofluid: A potential coolant candidate. Journal of Nanoparticle Research 15 (10). doi:10.1007/s11051-013-1986-6.
  • Taskesen, E., M. Tekir, E. Gedik, and K. Arslan. 2021. Numerical Investigation of Laminar Forced Convection and Entropy Generation of Fe3O4/Water Nanofluids in Different Cross-Sectioned Channel Geometries. Journal of Thermal Engineering 7 (7):1752–67. doi:10.18186/thermal.1025984.
  • Xue, Q. Z. 2003. Model for Effective Thermal Conductivity of Nanofluids. Physics Letters, Section A: General, Atomic and Solid State Physics 307: 313–317
  • Yu, W., H. Xie, L. Chen, and Y. Li. 2009. Thermochimica acta investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid. Thermochimica acta 491 (1–2):92–96. doi:10.1016/j.tca.2009.03.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.