212
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Environmental sustainability and exergy return on investment of selected solar dryer designs based on standard and extended exergy approaches

ORCID Icon, , , , , , , , & show all
Pages 10647-10664 | Received 05 Aug 2022, Accepted 25 Nov 2022, Published online: 19 Dec 2022

References

  • Adewale Folayan, J., F. N. Osuolale B, and P. A. L. Anawe. 2018. Data on exergy and exergy analyses of drying process of onion in a batch dryer. Data in Brief 21:1784–93. 10.1016/j.dib.2018.10.132.
  • Aghbashlo, M., M. Tabatabaei, S. S. B. Hosseini, B. Dashti, and M. Mojarab Soufiyan. 2018. Performance assessment of a wind power plant using standard exergy and extended exergy accounting (EEA) approaches. Journal of Cleaner Production 171:127–36.https://doi.org/10.1016/j.jclepro.2017.09.263.
  • Ahmadi, A., B. Das ,M.A.Ehyaei F.Esmaeilion, M.El Hajssad, D.H.Jamali, O.Koohshekan, R.Kumar, M.A.Rosen, S.Negi, Satya Sekhar Bhogilla, S.Safari, et al. Energy, exergy, and techno-economic performance analyses of solar dryers for agro products: A comprehensive review. Solar Energy 228: 349–73. 1 November 2021. 10.1016/j.solener.2021.09.060
  • Akbulut, A., and A. Durmus. 2010. Energy and exergy analyses of thin-layer drying of mulberry in a forced solar dryer. Energy 35 (4):1754–63. doi:10.1016/j.energy.2009.12.028.
  • Alic, E., M. Das, and E. Kavak Akpinar. 2021. Design, manufacturing, numerical analysis and environmental effects of single-pass forced convection solar air collector. Journal of Cleaner Production 311:127518. doi:10.1016/j.jclepro.2021.127518.
  • Atalay, H. 2019. Comparative assessment of solar and heat pump dryers with regardsto exergy and exergoeconomic performance. Energy 189:116180. doi:10.1016/j.energy.2019.116180.
  • Atalay, H., N. Yavas, and M. Turhan Çoban. 2022. Sustainability and performance analysis of a solar and wind energy assisted hybrid dryer. Renewable Energy 187:1173–83. doi:10.1016/j.renene.2022.02.020.
  • Bühler, F., T. Van Nguyen, and B. Elmegaard. 2016. Energy and exergy analyses of the danish industry sector. Applied Energy 184:1447–59. doi:10.1016/j.apenergy.2016.02.072.
  • Chen, Y., L. Feng, S. Tang, J. Wang, C. Huang, and M. Hook. 2020. Extended-exergy based energy return on investment method and its application to shale gas extraction in China. Journal of Cleaner Production 260:120933. doi:10.1016/j.jclepro.2020.120933.
  • Chinenye, N. M., D. I. Onyenwigwe, F. Abam, B. Lamrani, M. Simo-Tagne, N. Bekkioui, L. Bennamoun, and Z. Said. 2022d. Influence of hot water blanching and saline immersion period on the thermal effusivity and the drying kinetics of hybrid solar drying of sweet potato chips. Solar Energy 240:176–92. doi:10.1016/j.solener.2022.05.026.
  • Chowdhury, M. M. I., B. K. Bala, and M. A. Haque. 2011. Energy and exergy analysis of the solar drying of jackfruit leather. Biosystems Engineering 110:222–29. doi:10.1016/j.biosystemseng.2011.08.011.
  • Chowdhury, T., H. Chowdhury, P. Chowdhury, S. M. Sait, and A. Paul. 2020. A case study to the application of exergy-based indicators to address the sustainability of Bangladesh residential sector. Sustainable Energy Technologies and Assessments 37:100615. doi:10.1016/j.seta.2019.100615.
  • Chowdhury, T., Chowdhury H, Thirugnanasambandam M, Hossain S, Barua P, JU Ahamed, et al. 2019. Is the commercial sector of Bangladesh sustainable? – viewing via an exergetic approach. Journal of Cleaner Production 228:544–56. doi:10.1016/j.jclepro.2019.04.270.
  • Dincer, I. 2011. Exergy as a potential tool for sustainable drying systems. Sustainable Cities and Society 1 (2):91–96. doi:10.1016/j.scs.2011.04.001.
  • Dincer, I., and M. A. Rosen. 2013. Exergy Energy, Environment and Sustainable Development. UK: Elsevier, The Boulevard, Langford Lane, Kidlington, Oxford OX5 1 GB.
  • Duffie, J. A., and W. A. Beckman. 1991. Solar engineering of thermal processes. 2nd ed. John: Wiley& Sons. Inc.
  • Farajzadeh, R., B. Petrus Lomans, H. Hajibeygi, and J. Bruining. 2022. Exergy return on exergy investment and CO2 intensity of theunderground biomethanation process. ACS Sustainable Chemistry & Engineering 10 (31):10318–26. doi:10.1021/acssuschemeng.2c02931.
  • Fudholi, A., K. Sopian, M. Y. Othman, and M. H. Ruslan. 2014. January. Energy and exergy analyses of solar drying system of red seaweed. Energy and Buildings 68:121–29. ( Part A). doi:10.1016/j.enbuild.2013.07.072.
  • Fudholi, A., K. Sopian, M. Y. Othman, M. H. Ruslan, and B. Bakhtyar. 2013. Energy analysis and improvement potential of finned double-pass solar collector. Energy Conversion Management 75:234–40. doi:10.1016/j.enconman.2013.06.021.
  • Hassan, A. M., M. Ayoub, M. Eissa, T. Musa, H. Bruining, and R. Farajzadeh. 2019. Exergy return on exergy investment analysis of natural-polymer (Guar-Arabic gum) enhanced oil recovery process. Energy 181:162–72. doi:10.1016/j.energy.2019.05.137.
  • Hatami, S., G. Payehaneh, and A. Mehrpanahi. 2019. Energy and exergy analysis of an indirect solar dryer based on a dynamic model. Journal of Cleaner Production 244:118809. doi:10.1016/j.jclepro.2019.
  • Hepbasli, A. 2008. A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future. Renewable and Sustainable Energy Reviews 12:593–661. doi:10.1016/j.rser.2006.10.001.
  • Hossain, S., H. Chowdhury, T. Chowdhury, J. U. Ahamed, R. Saidur, S. M. Sait, and M. A. Rosen. 2020. Energy, exergy and sustainability analyses of Bangladesh’s power generation sector. Energy Reports 6:868–78. doi:10.1016/j.egyr.2020.04.010.
  • Karthikeyan, A. K., and S. Murugavelh. 2018. Thin layer drying kinetics and exergy analysis of turmeric (Curcuma longa) in a mixed-mode forced convection solar tunnel dryer. Renewable Energy Elsevier Ltd 128 (A):305–12. doi:10.1016/j.renene.2018.05.061.
  • Li, C., C. Gillum, K. Toupin, and B. Donaldson. 2015. Biomass boiler energy conversion system analysis with the aid of exergy-based methods. Energy Conversion Management 103:665–73. doi:10.1016/j.enconman.2015.07.014.
  • Lopez-Vida, E., A. Cesar-Munguía, O. García-Valladares, S. O. Salgado, and N. A. Domínguez. 2021. Energy and exergy analyses of a mixed-mode solar dryer of pear slices (Pyrus communis L). Energy 220:119740. doi:10.1016/j.energy.2020.119740.
  • Madhlopa, A., and G. Ngwalo. 2007. Solar dryer with thermal storage and biomass-backup heater. Solar Energy 81 (4):449–62. doi:10.1016/j.solener.2006.08.008.
  • Mascarenhas, J. D. S., H. Chowdhury, M. Thirugnanasambandam, T. Chowdhury, and R. Saidur. 2019. Energy, exergy, sustainability, and emission analysis of industrial air compressors. Journal of Cleaner Production 231:183e195. doi:10.1016/j.jclepro.2019.05.158.
  • Midilli, A., and I. Dincer. 2009. Development of some exergetic parameters for PEM fuel cells for measuring environmental impact and sustainability. International Journal of Hydrogen Energy 34 (9):3858–72. doi:10.1016/j.ijhydene.2009.02.066.
  • Midilli, A., and H. Kucuk. 2015. Assessment of exergetic sustainability indicators for a single layer solar drying system. International Journal of Exergy 16 (3):278. doi:10.1504/IJEX.2015.068227.
  • Mugi, R., and V. P. Chandramohan. 2021. Energy, exergy and economic analysis of an indirect type solar dryer using green chilli: A comparative assessment of forced and natural convection. Thermal Science and Engineering Progress 24:100950. doi:10.1016/j.tsep.2021.100950.
  • Ndukwu, M. C., L. Bennamoun, and F. I. Abam. 2018. Experience of solar drying in Africa:Presentation of designs, operations, and models. Food Engineering Reviews 10 (4):211–44. doi:10.1007/s12393-018-9181-2.
  • Ndukwu, M. C., L. Bennamoun, F. I. Abam, and A. B. Eke. Ukoha D. 2017. Energy and exergy analysis of a solar dryer integrated with sodium sulfate decahydrate and sodium chloride as a thermal storage medium. Renewable Energy 113:1182–92. doi:10.1016/j.renene.2017.06.097.
  • Ndukwu, M. C., E. O. Diemuodeke, F. I. Abam, U. C. Abada, N. Eke-Ekemezie, and M. Simo Tagne. 2020c. Development and modelling of heat and mass transfer analysis of a low-cost solar dryer integrated with biomass heater: Application for West African Region. Scientific African 10:e00615. doi:10.1016/j.sciaf.2020.e00615.
  • Ndukwu, M. C., A. Edet Ben, B. Lamrani, H. Wu, L. Bennamoun, and F. I. Abam. 2022c. Comparative experimental evaluation and thermodynamic analysis of the possibility of using degraded C15-C50 crankcase oil waste as thermal storage materials in solar drying systems. Solar Energy 240:408–21. doi:10.1016/j.solener.2022.05.056.
  • Ndukwu, M. C., Bassey B. Okon, F. I. Abam, B. Lamrani N. Bekkioui H. Wu L. Bennamoun U. Egwu C. N. Ezewuisi, C. B. Ndukwe, C. Nwachukwu, J. C. Ehiem, et al. 2022a. Energy and exergy analysis of solar dryer with triple air passage direction collector powered by a wind generator. International Journal of Energy and Environmental Engineering. doi:10.1007/s40095-022-00502-8.
  • Ndukwu, M. C., D. Onyenwigwe, F. I. Abam, A. B. Eke, and C. Dirioha. July 2022b. Development of a low-cost wind-powered active solar dryer integrated with glycerol as thermal storage. Renewable Energy 154:553–68. doi: 10.1016/j.renene.2020.03.016.
  • Ndukwu, M. C., M. Simo-Tagne, F. I. Abam, O. S. Onwuka, S. Prince, and L. Bennamoun. 2020. Exergetic sustainability and economic analysis of hybrid solar-biomass dryer integrated with copper tubing as heat exchanger. Heliyon 6:e03401. doi:10.1016/j.heliyon.2020.e03401.
  • Ndukwu, M. C., M. Simo-Tagne, and L. Bennamoun. 2021a. Solar drying research of medicinal and aromatic plants: An African experience with assessment of the economic and environmental impact. African Journal of Science, Technology, Innovation and Development 13 (2):247–60. doi:10.1080/20421338.2020.1776061.
  • Prommas, R., P. Rattanadecho, and D. Cholaseuk. 2010. Energy and exergy analyses in the drying process of porous media using hot air. International Communications in Heat and Mass Transfer 37 (4):372–78. doi:10.1016/j.icheatmasstransfer.2009.12.006.
  • Rabha, D. K., P. Muthukumar, and C. Somayaji. 2017. Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger. Renewable Energy 105:764e773. doi:10.1016/j.renene.2017.01.007.
  • Raugei, M. 2019. Net energy analysis must not compare apples and oranges. Nature Energy 4 (2):86. doi:10.1038/s41560-019-0327-0.
  • Rocco, M. V., E. Colombo, and E. Sciubba. 2014. Advances in exergy analysis: A novel assessment of the extended exergy accounting method. Applied Energy 113:1405–20. doi:10.1016/j.apenergy.2013.08.080.
  • Singh, G., K. Chopra, V. V. Tyagi, A. K. Pandey, Z. Ma, and H. Ren. 2021a. A comprehensive energy, exergy and enviroeconomic (3-e) analysis with carbon mitigation for multistage evaporation assisted milk powder production unit. Sustainable Energy Technology Assessments 43 (November):100925. doi:10.1016/j.seta.2020.100925.
  • Suherman, S., E. E. Susanto, A. W. Zardani, N. H. R. Dewi, and H. Hadiyanto. 2020. Energy–exergy analysis and mathematical modelling of cassava starch drying using a hybrid solar dryer. Cogent Engineering 7 (1):1771819. doi:10.1080/23311916.2020.1771819.
  • Surendhar, A., V. Sivasubramanian, D. Vidhyeswari1, and B. Deepanraj. 2018. Energy and exergy analysis, drying kinetics, modeling and quality parameters of microwave-dried turmeric slices. Journal of Thermal Analysis and Calorimetry 136 (1):185–97. doi:10.1007/s10973-018-7791-9(0123456789().,-volV)(012345.
  • Kh Tarek, A. E. Abouelnadar, Z. Yanlin, S. G. Eid, O. M. Sarah, and F. Qizhou. 2021. Energy and exergy analysis of carbon nanotubes-based solar dryer. Journal of Energy Storage 39:102623. doi:10.1016/j.est.2021.102623.
  • Velvizhi, G., R. Nair, C. Goswami, S. Kumar Arumugam, N. P. Shetti, and T. M. Aminabhavi. 2023. Carbon credit reduction: A techno-economic analysis of “drop-in” fuel production. Environmental Pollution 316:120507. doi:10.1016/j.envpol.2022.120507.
  • Yousef, M. S., and H. Hassan. 2020. Energy payback time, exergoeconomic and enviroeconomic analyses of using thermal energy storage system with a solar desalination system: An experimental study. Journal of Cleaner Production 270:122082. doi:10.1016/j.jclepro.2020.122082.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.