886
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Stochastic wind energy integrated multi source power system control via a novel model predictive controller based on Harris Hawks optimization

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 10694-10719 | Received 29 Aug 2022, Accepted 02 Dec 2022, Published online: 22 Dec 2022

References

  • Abubakr, H., J. C. Vasquez, T. H. Mohamed, and J. M. Guerrero. 2022. The concept of direct adaptive control for improving voltage and frequency regulation loops in several power system applications. International Journal of Electrical Power & Energy Systems 140:108068. doi:10.1016/j.ijepes.2022.108068.
  • Ali, T., S. A. Malik, I. A. Hameed, A. Daraz, H. Mujlid, and A. T. Azar. 2022. Load frequency control and automatic voltage regulation in a multi-area interconnected power system using nature-inspired computation-based control methodology. Sustainability 14 (19):12162. doi:10.3390/su141912162.
  • Ansari, J., A. R. Abbasi, and B. B. Firouzi. 2022. Decentralized LMI-based event-triggered integral sliding mode LFC of power systems with disturbance observer. International Journal of Electrical Power & Energy Systems 138:107971. doi:10.1016/j.ijepes.2022.107971.
  • Arya, Y. 2018. Automatic generation control of two-area electrical power systems via optimal fuzzy classical controller. Journal of the Franklin Institute 355 (5):2662–88. doi:10.1016/j.jfranklin.2018.02.004.
  • Arya, Y. 2019a. Impact of hydrogen aqua electrolyzer-fuel cell units on automatic generation control of power systems with a new optimal fuzzy TIDF-II controller. Renewable Energy 139:468–82. doi:10.1016/j.renene.2019.02.038.
  • Arya, Y. 2019b. AGC of PV-thermal and hydro-thermal power systems using CES and a new multi-stage FPIDF-(1+PI) controller. Renewable Energy 134:796–806. doi:10.1016/j.renene.2018.11.071.
  • Arya, Y. 2020. Effect of electric vehicles on load frequency control in interconnected thermal and hydrothermal power systems utilising CF-FOIDF controller. IET Generation, Transmission & Distribution 14 (14):2666–75. doi:10.1049/iet-gtd.2019.1217.
  • Arya, Y., P. Dahiya, E. Çelik, G. Sharma, H. Gözde, and I. Nasiruddin. 2021a. AGC performance amelioration in multi-area interconnected thermal and thermal-hydro-gas power systems using a novel controller. International Journal of Engineering, Science and Technology 24 (2):384–96. doi:10.1016/j.jestch.2020.08.015.
  • Arya, Y., N. Kumar, P. Dahiya, G. Sharma, E. Çelik, S. Dhundhara, and M. Sharma. 2021b. Cascade-IλDμN controller design for AGC of thermal and hydro-thermal power systems integrated with renewable energy sources. IET Renewable Power Generation 15 (3):504–20. doi:10.1049/rpg2.12061.
  • Biswas, S., P. K. Roy, and K. Chatterjee. 2021. FACTS-based 3DOF-PID controller for LFC of renewable power system under deregulation using GOA. IETE Journal of Research 1–14. doi:10.1080/03772063.2020.1870874.
  • Çelik, E., N. Öztürk, Y. Arya, C. Ocak. 2021. (1 + PD)-PID cascade controller design for performance betterment of Load Frequency Control in diverse electric power systems. Neural Computing and Applications. 33(22):15433–56. doi:10.1007/s00521-021-06168-3.
  • Dahiya, P., P. Mukhija, A. R. Saxena, and Y. Arya. 2016. Comparative performance investigation of optimal controller for AGC of electric power generating systems. Automatika 57 (4):902–21. doi:10.7305/automatika.2017.12.1707.
  • Dahiya, P., V. Sharma, and R. Naresh. 2015. Solution approach to automatic generation control problem using hybridized gravitational algorithm optimized PID and FOPID controllers. Advances in Electrical and Computer Engineering 15:23–34. doi:10.4316/AECE.2015.02004.
  • Dahiya, P., V. Sharma, and R. Naresh. 2016. Automatic generation control using disrupted oppositional based gravitational search algorithm optimized sliding mode controller under deregulated environment. IET Generation, Transmission & Distribution 10 (16):3995–4005. doi:10.1049/iet-gtd.2016.0175.
  • Dash, P., L. C. Sakia, and N. Sinha. 2015. Automatic generation control of multi area thermal system using bat algorithm optimized PD–PID cascade controller. International Journal of Electrical Power & Energy Systems 68:364–72. doi:10.1016/j.ijepes.2014.12.063.
  • Dashtdar, M., A. Flah, S. M. Hosseinimoghadam, C. R. Reddy, H. Kotb, K. M. AboRas, and C. B. Edson Improving the power quality of island microgrid with voltage and frequency control based on a hybrid genetic algorithm and PSO. IEEE Access 2022.
  • Elsisi, M., M. Aboelela, M. Soliman, and W. Mansour. 2018. Design of optimal model predictive controller for LFC of nonlinear multi-area power system with energy storage devices. Electric Power Components and Systems 46 (11–12):1300–11. doi:10.1080/15325008.2018.1469056.
  • Fayek, H. H., and E. Rusu. 2022. Novel combined load frequency control and automatic voltage regulation of a 100% sustainable energy interconnected microgrids. Sustainability 14 (15):9428. doi:10.3390/su14159428.
  • Gaing, Z. L. 2004. A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Transactions on Energy Conversion 19 (2):384–91. doi:10.1109/TEC.2003.821821.
  • Gong, X., X. Wang, and G. Joos An online data-driven method for microgrid secondary voltage and frequency control with ensemble Koopman modeling. IEEE Transactions on Smart Grid 2022.
  • Guha, D., P. K. Roy, and S. Banerjee.
  • Safiullah, S., A. Rahman, and S. A. Lone. 2022. A second-order ADRC for synchronized frequency-voltage mitigation of EV integrated power system. IETE Journal of Research 15:1–6.
  • Safiullah, S., A. Rahman, S. A. Lone, S. S. Hussain, and T. S. Ustun. 2022. Robust frequency-voltage stabilization scheme for multi-area power systems incorporated with EVs and renewable generations using AI based modified disturbance rejection controller. Energy Reports 8 (12):186–202. doi:10.1016/j.egyr.2022.08.272.
  • Sahani, A. K., U. Raj, R. Shankar, and R. K. Mandal. 2019. Firefly optimization based control strategies for combined load frequency control and automatic voltage regulation for two-area interconnected power system. International Journal on Electrical Engineering and Informatics 11 (4):1–12. doi:10.15676/ijeei.2019.11.4.8.
  • Sahu, R. K., S. Panda, and U. K. Rout. 2013. DE optimized parallel 2-DOF PID controller for Load Frequency Control of power system with governor dead band nonlinearity. International Journal of Electrical Power & Energy Systems 49:19–33. doi:10.1016/j.ijepes.2012.12.009.
  • Sepehrzad, R., A. Mahmoodi, S. Y. Ghalebi, A. R. Moridi, and A. R. Seifi. 2022. Intelligent hierarchical energy and power management to control the voltage and frequency of micro-grids based on power uncertainties and communication latency. Electric Power Systems Research 202:107567. doi:10.1016/j.epsr.2021.107567.
  • Sharma, M., S. Dhundhara, Y. Arya, and S. Prakash. 2020. Frequency excursion mitigation strategy using a novel COA optimised fuzzy controller in wind integrated power systems. IET Renewable Power Generation 14 (19):4071–85. doi:10.1049/iet-rpg.2020.0882.
  • Sharma, Y., and L. C. Saikia. 2015. Automatic generation control of a multi-area ST – Thermal power system using grey wolf optimizer algorithm based classical controllers. International Journal of Electrical Power & Energy Systems 73:853–62. doi:10.1016/j.ijepes.2015.06.005.
  • Sikander, A., P. Thakur, R. C. Bansal, and S. Rajasekar. 2018. A novel technique to design cuckoo search based FOPID controller for AVR in power systems. Computers & Electrical Engineering 70:261–74. doi:10.1016/j.compeleceng.2017.07.005.
  • Singh, A., V. Sharma, P. Dahiya, and R. Naresh. 2018. Model predictive based Load Frequency Control of interconnected power systems. Recent Advances in Electrical and Electronic Engineering 11:322–33.
  • Sun, X., K. Liao, J. Yang, and Z. He. Model predictive control based load frequency control for power systems with wind turbine generators,” 2019 IEEE Innovative Smart Grid Technologies - Asia ( ISGT Asia). 2019;1387–92. doi: 10.1109/ISGT-Asia.2019.8881147.
  • Vijaya Chandrakala, K. R. M., and S. Balamurugan. 2016. Simulated annealing based optimal frequency and terminal voltage control of multi-source multi area system. International Journal of Electrical Power & Energy Systems 78:823–29. doi:10.1016/j.ijepes.2015.12.026.
  • Wang, X., Q. Zhao, B. He, Y. Wang, J. Yang, and X. Pan. 2017. Load frequency control in multiple microgrids based on model predictive control with communication delay. The Journal of Engineering 13 (13):1851–56. doi:10.1049/joe.2017.0652.
  • Kerdphol, T., F. S. Rahman, Y. Mitani, K. Hongesombut, and S. Küfeoğlu. 2017. Virtual inertia control-based model predictive control for microgrid frequency stabilization considering high renewable energy integration. Sustainability 9 (5):773. doi:10.3390/su9050773.
  • Khooban, M. H., T. Niknama, F. Blaabjerg, and T. Dragicevic. 2017. A new Load Frequency Control strategy for micro-grids with considering electrical vehicles. Electric Power Systems Research 143:585–98. doi:10.1016/j.epsr.2016.10.057.
  • Kumar, A., and G. Shankar. Priority based optimization of PID controller for automatic voltage regulator system using gravitational search algorithm. Proc. IEEE RDCAPE, Noida, India, 2015;292–97.
  • Kumar, D., H. D. Mathur, S. Bhanot, and R. C. Bansal. 2019. Frequency regulation in islanded microgrid considering stochastic model of wind and PV. International Transactions on Electrical Energy Systems e12049.
  • Kumar, V., V. Sharma, and R. Naresh. 2022. Model predictive controller-based voltage and frequency regulation in renewable energy integrated power system coordinated with virtual inertia and redox flow battery. Iranian Journal of Science and Technology, Transactions of Electrical Engineering 21:1–8.
  • Kumar, V., V. Sharma, and R. Naresh. 2021. HHO-based model predictive controller for combined voltage and frequency control problem including SMES. IETE Journal of Research 1–15. doi:10.1080/03772063.2021.1908180.
  • Kumar, V., V. Sharma, and R. Naresh. 2023. Leader Harris Hawks algorithm based optimal controller for automatic generation control in PV-hydro-wind integrated power network. Electric Power Systems Research 214 (B):1–14. doi:10.1016/j.epsr.2022.108924.
  • Kundur, P. 1994. Power system stability and control. New York, USA: Tata McGraw-Hill.
  • Lal, D. K., and A. K. Barisal. 2019. Combined load frequency and terminal voltage control of power systems using moth flame optimization algorithm. Journal of Electrical Systems and Information Technology 6 (8):1–24. doi:10.1186/s43067-019-0010-3.
  • Liu, H., Z. Hu, Y. Song, and J. Lin. 2013. Decentralized vehicle-to-grid control for primary frequency regulation considering charging demands. IEEE Transactions on Power Systems 28 (3):3480–89. doi:10.1109/TPWRS.2013.2252029.
  • Naga Sai Kalyan, C. H., and G. Sambasiva Rao. 2020. Combined frequency and voltage stabilisation of multi-area multisource system by DE-AEFA optimised PID controller with coordinated performance of IPFC and RFBs. International Journal of Ambient Energy. doi:10.1080/01430750.2020.1860130.
  • Naga Sai Kalyan, C., and G. Sambasiva Rao. 2021. Coordinated control strategy for simultaneous frequency and voltage stabilisation of the multi-area interconnected system considering communication time delays. International Journal of Ambient Energy. doi:10.1080/01430750.2021.1967192.
  • Nahas, N., M. Abouheaf, M. Noomane Darghouth, and A. Sharaf. 2021. A multi-objective AVR-LFC optimization scheme for multi-area power systems. Electric Power Systems Research 200:107467. doi:10.1016/j.epsr.2021.107467.
  • National Renewable Research Laboratory (NREL). Accessed December 30, 2021. Available at http://midcdmz.nrel.gov/
  • Pal, D., B. K. Panigrahi, and S. Bhasin. Distributed adaptive control framework for enhanced voltage and frequency regulation in inverter interfaced autonomous distribution network. IEEE Systems Journal, 2022.
  • Pan, I., and S. Das. 2016. Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO. ISA Transactions 62:19–29. doi:10.1016/j.isatra.2015.03.003.
  • Parida, M., and J. Nanda. Automatic generation control of a hydro‐thermal system in deregulated environment. International conference on electrical machines and systems, Nanjing, 2005; 148–59.
  • Qiu, X., Y. Wang, H. Zhang, and X. Xie, Resilient model free adaptive distributed LFC for multi-area power systems against jamming attacks. IEEE Trans. Neural Networks and Learning Syst. 2021. doi: 10.1109/TNNLS.2021.3123235.
  • Rajbongshi, R., and L. C. Saikia. 2017. Combined control of voltage and frequency of multi area multi source system incorporating solar thermal power plant using lightning search algorithm optimized classical controllers. IET Generation, Transmission & Distribution 11 (10):2489–2498. doi:10.1049/iet-gtd.2016.1154.
  • Rajbongshi, R., and L. C. Saikia. 2018. Performance of coordinated FACTS and energy storage devices in combined multi‐ area ALFC and AVR system. Jour. of Renew. and Sustain. Energy 9 (6):1–22.
  • Rajbongshi, R., and L. Chandra Saikia. 2019. Performance of coordinated interline power flow controller and power system stabilizer in combined multiarea restructured ALFC and AVR system. International Transactions on Electrical Energy Systems 29 (5):e2822. doi:10.1002/2050-7038.2822.
  • Rakhshani, E., K. Rouzbehi, and S. Sadeh. A new combined model for simulation of mutual effects between LFC and AVR loops. Asia-Pacific Power and Energy Engineering Conference, Wuhan, 2009; 1–5.
  • Saadat, H. 2004. Power system analysis. New York,

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.