248
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermo-Chemical conversion of polyolefin-based facemask using bench-scale pyrolysis system

ORCID Icon, , , , , & show all
Pages 542-556 | Received 23 May 2022, Accepted 18 Oct 2022, Published online: 29 Jan 2023

References

  • Achilias, D. S., C. Roupakias, P. Megalokonomos, A. A. Lappas, and Ε. V. Antonakou. 2007. Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). Journal of Hazardous Materials 149 (3):536–42. doi:10.1016/j.jhazmat.2007.06.076.
  • Alayont, Ş., D. B. Kayan, H. Durak, E. K. Alayont, and S. Genel. 2022. The role of acidic, alkaline and hydrothermal pretreatment on pyrolysis of wild mustard (Sinapis arvensis) on the properties of bio-oil and bio-char. Bioresource Technology Reports 17:100980. doi:10.1016/j.biteb.2022.100980.
  • Al-Salem, S. M., A. Antelava, A. Constantinou, G. Manos, and A. Dutta. 2017. A Review on Thermal and Catalytic Pyrolysis of Plastic Solid Waste (PSW). Journal of Environmental Management 197:177–98. doi:10.1016/j.jenvman.2017.03.084.
  • Aragaw, T. A., and B. A. Mekonnen. 2021. Current plastics pollution threats due to COVID-19 and its possible mitigation techniques: A waste-to-energy conversion via Pyrolysis. Environmental Systems Research 10 (1):1–11. doi:10.1186/s40068-020-00217-x.
  • Aramkitphotha, S., H. Tanatavikorn, C. Yenyuak, and T. Vitidsant. 2019. Low sulfur fuel oil from blends of microalgae pyrolysis oil and used lubricating oil: Properties and economic evaluation. Sustainable Energy Technologies and Assessments 31:339–46. doi:10.1016/j.seta.2018.12.019.
  • ASTM D4294-16. 2016. Standard test method for sulfur in petroleum and petroleum products by energy dispersive X-ray fluorescence spectrometry. West Conshohocken, PA, USA: ASTM International.
  • ASTM D445-17. 2017. Standard test method for kinematic viscosity of transparent and opaque liquids (and calculation of dynamic viscosity). West Conshohocken, PA, USA: ASTM International.
  • ASTM D4868-17. 2017. Standard test method for estimation of net and gross heat of combustion of hydrocarbon burner and diesel fuels. West Conshohocken, PA, USA: ASTM International.
  • ASTM D6357-11. 2011. “Test methods for determination of trace elements in coal, coke, & combustion residues from coal utilization processes by inductively coupled plasma atomic emission, inductively coupled plasma mass, & graphite furnace atomic absorption spectrometry”. West Conshohocken, PA, USA: ASTM International.
  • ASTM E775-15. 2015. Standard test methods for total sulfur in the analysis sample of refuse-derived fuel. West Conshohocken, PA, USA: ASTM International.
  • ASTMR D5865-13. 2013. Standard test method for gross calorific value of coal and coke. West Conshohocken, PA, USA:ASTM International.
  • Aysu, T., and H. Durak. 2015. Thermochemical conversion of Datura stramonium L. by supercritical liquefaction and pyrolysis processes. The Journal of Supercritical Fluids 102:98–114. doi:10.1016/j.supflu.2015.04.008.
  • Aysu, T., and H. Durak. 2016. Pyrolysis of giant mullein (Verbascum thapsus L.) in a fixed-bed reactor: Effects of pyrolysis parameters on product yields and character. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38 (5):661–69. doi:10.1080/15567036.2013.819049.
  • Bamakan, S. M. H., P. Malekinejad, and M. Ziaeian. 2022. Towards blockchain-based hospital waste management systems; applications and future trends. Journal of Cleaner Production 131440:131440. doi:10.1016/j.jclepro.2022.131440.
  • Battegazzore, D., F. Cravero, and A. Frache. 2020. Is it possible to mechanical recycle the materials of the disposable filtering masks? Polymers 12 (11):2726. doi:10.3390/polym12112726.
  • Blat, A., J. Dybas, K. Chrabaszcz, K. Bulat, A. Jasztal, M. Kaczmarska …, R. Pulyk, T. Popiela, A. Slowik, K. Malek, M. G. Adamski, Marzec, K. M. 2019. FTIR, Raman and AFM characterization of the clinically valid biochemical parameters of the thrombi in acute ischemic stroke. Scientific Reports 9 (1):1–10. doi:10.1038/s41598-019-51932-0.
  • Borsella, E., R. Aguado, A. De Stefanis, and M. Olazar. 2018. Comparison of catalytic performance of an iron-alumina pillared montmorillonite and HZSM-5 zeolite on a spouted bed reactor. Journal of Analytical and Applied Pyrolysis 130:320–31. doi:10.1016/j.jaap.2017.12.015.
  • Chakraborty, S., M. Kumar, K. Suresh, and G. Pugazhenthi. 2016. Investigation of structural, rheological and thermal properties of PMMA/ONi-Al LDH nanocomposites synthesized via solvent blending method: Effect of LDH loading. Chinese Journal of Polymer Science 34 (6):739–54. doi:10.1007/s10118-016-1786-4.
  • Chen, Y., and Q. Wang. 2007. Thermal oxidative degradation kinetics of flame-retarded polypropylene with intumescent flame-retardant master batches in situ prepared in twin-screw extruder. Polymer Degradation and Stability 92 (2):280–91. doi:10.1016/j.polymdegradstab.2006.11.004.
  • Chen, Z., W. Zhang, H. Yang, K. Min, J. Jiang, D. Lu …, X. Huang, G. Qu, Q. Liu, G. Jiang. 2022. A pandemic-induced environmental dilemma of disposable masks: Solutions from the perspective of the life cycle. Environmental Science: Processes & Impacts 24 (5):649–74. doi:10.1039/D1EM00509J.
  • Chowdhury, S., A. Gaur, S. Mohapatra, S. Verma, S. Mishra, G. Dwivedi …, T. N. Verma, P. Verma. 2022. Environmental pollution analysis during the lockdown imposed due to COVID-19: A case study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44 (2):4679–92. doi:10.1080/15567036.2022.2079773.
  • Coats, A. W., and J. P. Redfern. 1964. Kinetic parameters from thermogravimetric data. Nature 201 (4914):68–69. doi:10.1038/201068a0.
  • García, F., E. Barbería, P. Torralba, I. Landin, C. Laguna, M. Marquès …, M. Nadal, J. L. Domingo. 2021. Decreasing temporal trends of polychlorinated dibenzo-p-dioxins and dibenzofurans in adipose tissue from residents near a hazardous waste incinerator. The Science of the Total Environment 751:141844. doi:10.1016/j.scitotenv.2020.141844.
  • Gopanna, A., R. N. Mandapati, S. P. Thomas, K. Rajan, and M. Chavali. 2019. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and wide-angle X-ray scattering (WAXS) of polypropylene (PP)/cyclic olefin copolymer (COC) blends for qualitative and quantitative analysis. Polymer Bulletin 76 (8):4259–74. doi:10.1007/s00289-018-2599-0.
  • Harussani, M. M., S. M. Sapuan, U. Rashid, and A. Khalina. 2021. Development and characterization of polypropylene waste from personal protective equipment (PPE)-derived char-filled sugar palm starch biocomposite briquettes. Polymers 13 (11):1707. doi:10.3390/polym13111707.
  • Hayward, S. J., Y. D. Lei, and F. Wania. 2011. Sorption of a diverse set of organic chemical vapors onto XAD-2 resin: Measurement, prediction and implications for air sampling. Atmospheric Environment 45 (2):296–302. doi:10.1016/j.atmosenv.2010.10.028.
  • Honus, S., S. Kumagai, G. Fedorko, V. Molnár, and T. Yoshioka. 2018. Pyrolysis gases produced from individual and mixed PE, PP, PS, PVC, and PET—Part I: Production and physical properties. Fuel 221:346–60. doi:10.1016/j.fuel.2018.02.074.
  • Jung, S., S. Lee, X. Dou, and E. E. Kwon. 2021. Valorization of disposable COVID-19 mask through the thermo-chemical process. Chemical Engineering Journal 405:126658. doi:10.1016/j.cej.2020.126658.
  • Khoo, K. S., L. Y. Ho, H. R. Lim, H. Y. Leong, and K. W. Chew. 2021. Plastic waste associated with the COVID-19 pandemic: Crisis or opportunity? Journal of Hazardous Materials 417:126108. doi:10.1016/j.jhazmat.2021.126108.
  • Klemeš, J. J., Y. Van Fan, and P. Jiang. 2020. The energy and environmental footprints of COVID-19 fighting measures–ppe, disinfection, supply chains. Energy 211:118701. doi:10.1016/j.energy.2020.118701.
  • Larsen, G. S., Y. Cheng, L. L. Daemen, T. N. Lamichhane, D. K. Hensley, K. Hong …, S. J. Monaco, A. M. Levine, R. J. Lee, E. Betters, et al. 2021. Polymer, additives, and processing effects on N95 filter performance. ACS Applied Polymer Materials 3 (2):1022–31. doi:10.1021/acsapm.0c01294.
  • Lee, S. B., J. Lee, Y. F. Tsang, Y. M. Kim, J. Jae, S. C. Jung, and Y. K. Park. 2021. Production of value-added aromatics from wasted COVID-19 mask via catalytic pyrolysis. Environmental Pollution 283:117060. doi:10.1016/j.envpol.2021.117060.
  • Li, B., Y. Huang, D. Guo, Y. Liu, Z. Liu, J. C. Han …, J. Zhao, X. Zhu, Y. Huang, Z. Wang, B. Xing. 2022. Environmental risks of disposable face masks during the pandemic of COVID-19: Challenges and management. The Science of the Total Environment 825:153880. doi:10.1016/j.scitotenv.2022.153880.
  • Lin, H. T., M. S. Huang, J. W. Luo, L. H. Lin, C. M. Lee, and K. L. Ou. 2010. Hydrocarbon fuels produced by catalytic pyrolysis of hospital plastic wastes in a fluidizing cracking process. Fuel Processing Technology 91 (11):1355–63. doi:10.1016/j.fuproc.2010.03.016.
  • Mastral, J. F., C. Berrueco, M. Gea, and J. Ceamanos. 2006. Catalytic degradation of high density polyethylene over nanocrystalline HZSM-5 zeolite. Polymer Degradation and Stability 91 (12):3330–38. doi:10.1016/j.polymdegradstab.2006.06.009.
  • Mehran, M. T., S. Raza Naqvi, M. Ali Haider, M. Saeed, M. Shahbaz, and T. Al-Ansari (2021). Global plastic waste management strategies (Technical and behavioral) during and after COVID-19 pandemic for cleaner global urban life. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–10.
  • Mészáros, E., A. Bodor, Á. Szierer, E. Kovács, K. Perei, C. Tölgyesi …, Z. Bátori, G. Feigl. 2022. Indirect effects of COVID-19 on the environment: How plastic contamination from disposable surgical masks affect early development of plants. Journal of Hazardous Materials 129255:129255. doi:10.1016/j.jhazmat.2022.129255.
  • Miandad, R., M. A. Barakat, A. S. Aburiazaiza, M. Rehan, and A. S. Nizami. 2016. Catalytic pyrolysis of plastic waste: A review. Process Safety and Environmental Protection 102:822–38. doi:10.1016/j.psep.2016.06.022.
  • Miandad, R., M. Rehan, M. A. Barakat, A. S. Aburiazaiza, H. Khan, I. M. Ismail …, J. Dhavamani, J. Gardy, A. Hassanpour, A. S. Nizami. 2019. Catalytic pyrolysis of plastic waste: Moving toward pyrolysis based biorefineries. Frontiers in Energy Research 7:27. doi:10.3389/fenrg.2019.00027.
  • Miskolczi, N., T. Juzsakova, and J. Sója. 2019. Preparation and application of metal loaded ZSM-5 and y-zeolite catalysts for thermo-catalytic pyrolysis of real end of life vehicle plastics waste. Journal of the Energy Institute 92 (1):118–27. doi:10.1016/j.joei.2017.10.017.
  • Mullen, C. A., A. A. Boateng, K. B. Hicks, N. M. Goldberg, and R. A. Moreau. 2010. Analysis and comparison of bio-oil produced by fast pyrolysis from three barley biomass/byproduct streams. Energy & fuels 24 (1):699–706. doi:10.1021/ef900912s.
  • Olaniyan, O. T., A. Dare, B. Okoli, C. O. Adetunji, B. O. Ibitoye, G. E. Okotie, and O. Eweoya. 2022. Increase in SARS-CoV-2 infected biomedical waste among low middle-income countries: Environmental sustainability and impact with health implications. Journal of Basic and Clinical Physiology and Pharmacology 33 (1):27–44. doi:10.1515/jbcpp-2020-0533.
  • Paraschiv, M., R. Kuncser, M. Tazerout, and T. Prisecaru. 2015. New energy value chain through pyrolysis of hospital plastic waste. Applied Thermal Engineering 87:424–33. doi:10.1016/j.applthermaleng.2015.04.070.
  • Park, C., H. Choi, K. Y. A. Lin, E. E. Kwon, and J. Lee. 2021. COVID-19 mask waste to energy via thermochemical pathway: Effect of Co-Feeding food waste. Energy 230:120876. doi:10.1016/j.energy.2021.120876.
  • Peng, Y., Y. Wang, L. Ke, L. Dai, Q. Wu, K. Cobb …, Y. Zeng, R. Zou, Y. Liu, R. Ruan. 2022. A review on catalytic pyrolysis of plastic wastes to high-value products. Energy Conversion and Management 254:115243. doi:10.1016/j.enconman.2022.115243.
  • Pizarro-Ortega, C. I., D. C. Dioses-Salinas, M. D. F. Severini, A. F. López, G. N. Rimondino, N. U. Benson …, S. Dobaradaran, G. E. De-la-Torre. 2022. Degradation of plastics associated with the COVID-19 pandemic. Marine Pollution Bulletin 176:113474. doi:10.1016/j.marpolbul.2022.113474.
  • Praveen Kumar, K., and S. Srinivas. 2019. Catalytic co-pyrolysis of biomass and plastics (polypropylene and polystyrene) using spent FCC catalyst. Energy & fuels 34 (1):460–73. doi:10.1021/acs.energyfuels.9b03135.
  • Ren, F., Y. Ding, and Y. Leng. 2014. Infrared spectroscopic characterization of carbonated apatite: A combined experimental and computational study. Journal of Biomedical Materials Research Part A: An Official Journal of the Society for Biomaterials, the Japanese Society for Biomaterials, and the Australian Society for Biomaterials and the Korean Society for Biomaterials 102 (2):496–505. doi:10.1002/jbm.a.34720.
  • Rengarajan, T., P. Rajendran, N. Nandakumar, B. Lokeshkumar, P. Rajendran, and I. Nishigaki. 2015. Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pacific Journal of Tropical Biomedicine 5 (3):182–89. doi:10.1016/S2221-1691(15)30003-4.
  • Ren, X., M. S. Ghazani, H. Zhu, W. Ao, H. Zhang, E. Moreside …, J. Zhu, P. Yang, N. Zhong, X. Bi. 2022. Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review. Applied Energy 315:118970. doi:10.1016/j.apenergy.2022.118970.
  • Rhead, M. M., and S. A. Hardy. 2003. The sources of polycyclic aromatic compounds in diesel engine emissions☆. Fuel 82 (4):385–93. doi:10.1016/S0016-2361(02)00314-9.
  • Russ, M., M. Gonzales, M. Horlacher, P. Shonfield, and S. Deimling. 2020. Evaluation of pyrolysis with LCA-3 Case Studies. BASF SE, Leinfelden-Echterdingen. Accessed Oct 3. https://www.basf.com/global/en/who-we-are/sustainability/we-drive-sustainable-solutions/circular-economy/mass-balanceapproach/chemcycling/lca-for-chemcycling.html
  • Sangkham, S. 2020. Face mask and medical waste disposal during the novel COVID-19 pandemic in Asia. Case Studies in Chemical and Environmental Engineering 2:100052. doi:10.1016/j.cscee.2020.100052.
  • Selvaranjan, K., S. Navaratnam, P. Rajeev, and N. Ravintherakumaran. 2021. Environmental challenges induced by extensive use of face masks during COVID-19: A review and potential solutions. Environmental Challenges 3:100039. doi:10.1016/j.envc.2021.100039.
  • Silva, A. L. P., J. C. Prata, A. C. Duarte, D. Barcelò, and T. Rocha-Santos. 2021. An urgent call to think globally and act locally on landfill disposable plastics under and after COVID-19 pandemic: Pollution prevention and technological (Bio) remediation solutions. Chemical Engineering Journal 426:131201. doi:10.1016/j.cej.2021.131201.
  • Singh, S., C. Wu, and P. T. Williams. 2012. Pyrolysis of waste materials using TGA-MS and TGA-FTIR as complementary characterisation techniques. Journal of Analytical and Applied Pyrolysis 94:99–107. doi:10.1016/j.jaap.2011.11.011.
  • Sriningsih, W., M. G. Saerodji, W. Trisunaryanti, R. Falah, I. I. Armunanto, and I. I. Falah. 2014. Fuel production from LDPE plastic waste over natural zeolite supported Ni, Ni-Mo, Co and Co-Mo metals. Procedia Environmental Sciences 20:215–24. doi:10.1016/j.proenv.2014.03.028.
  • Suriapparao, D. V., D. A. Kumar, and R. Vinu. 2022. Microwave co-pyrolysis of PET bottle waste and rice husk: Effect of plastic waste loading on product formation. Sustainable Energy Technologies and Assessments 49:101781. doi:10.1016/j.seta.2021.101781.
  • Tat, M. E., and J. H. Van Gerpen. 1999. The kinematic viscosity of biodiesel and its blends with diesel fuel. Journal of the American Oil Chemists’ Society 76 (12):1511–13. doi:10.1007/s11746-999-0194-0.
  • Tinoco, P., G. Almendros, J. Sanz, R. González-Vázquez, and F. J. González-Vila. 2006. Molecular descriptors of the effect of fire on soils under pine forest in two continental Mediterranean soils. Organic Geochemistry 37 (12):1995–2018. doi:10.1016/j.orggeochem.2006.08.007.
  • Yang, Y., W. Liu, Z. Zhang, H. P. Grossart, and G. M. Gadd. 2020. Microplastics provide new microbial niches in aquatic environments. Applied Microbiology and Biotechnology 104 (15):6501–11. doi:10.1007/s00253-020-10704-x.
  • Yousef, S., J. Eimontas, I. Stasiulaitiene, K. Zakarauskas, and N. Striūgas. 2022. Pyrolysis of all layers of surgical mask waste as a mixture and its life-cycle assessment, Vol. 32, 519–531. Netherlands: Sustainable Production and Consumption.
  • Zhang, A., Z. Yu, P. Guo, H. Ren, Y. Yang, and M. Qi. 2021. Characteristics and kinetics of pyrolysis of municipal solid waste. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–13. doi:10.1080/15567036.2021.1960652.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.