195
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Integrated bio-refinery process for mass production of silica, lignin, and nanocellulose from rice straw biomass

& ORCID Icon
Pages 817-828 | Received 01 Jun 2022, Accepted 15 Jan 2023, Published online: 03 Feb 2023

References

  • Abdul Khalil, H. P. S., Y. Davoudpour, M. N. Islam, A. Mustapha, K. Sudesh, R. Dungani, and M. Jawaid. 2014. Production and modification of nanofibrillated cellulose using various mechanical processes: A review. Carbohydrate Polymers 99:649–65. doi:10.1016/j.carbpol.2013.08.069.
  • Abdul Khalil, H. P. S., Y. Davoudpour, C. K. Saurabh, M. S. Hossain, A. S. Adnan, R. Dungani, M. T. Paridah, Z. I. S. Mohamed, M. R. N. Fazita, M. I. Syakir, et al. 2016. A review on nanocellulosic fibres as new material for sustainable packaging: Process and applications. Renewable and Sustainable Energy Reviews 64:823–36. doi:10.1016/j.rser.2016.06.072.
  • An, D., Y. Guo, Y. Zhu, and Z. Wang. 2010. A green route to preparation of silica powders with rice husk ash and waste gas. Chemical Engineering Journal 162 (2):509–14. doi:10.1016/j.cej.2010.05.052.
  • Beaucamp, A., Y. Wang, M. Culebras, and M. N. Collins. 2019. Carbon fibres from renewable resources: The role of the lignin molecular structure in its blendability with biobased poly(ethylene terephthalate). Green Chemistry 21 (18):5063–72. doi:10.1039/c9gc02041a.
  • Bhattacharya, M., and M. K. Mandal. 2018. Synthesis of rice straw extracted nano-silica-composite membrane for CO2 separation. Journal of Cleaner Production 186:241–52. doi:10.1016/j.jclepro.2018.03.099.
  • Binod, P., R. Sindhu, R. R. Singhania, S. Vikram, L. Devi, S. Nagalakshmi, N. Kurien, R. K. Sukumaran, and A. Pandey. 2010. Bioethanol production from rice straw: An overview. Bioresource Technology 101 (13):4767–74. doi:10.1016/j.biortech.2009.10.079.
  • Bondancia, T. J., J. De Aguiar, G. Batista, A. J. G. Cruz, J. M. Marconcini, L. H. C. Mattoso, and C. S. Farinas. 2020. Production of nanocellulose using citric acid in a biorefinery concept: Effect of the hydrolysis reaction time and techno-economic analysis. Industrial & Engineering Chemistry Research 59 (25):11505–16. doi:10.1021/acs.iecr.0c01359.
  • Dien, L. Q., T. D. Cuong, N. T. Minh Phuong, P. H. Hoang, D. N. Truyen, and N. T. Minh Nguyet. 2019. Nanocellulose fabrication from Oryza sativa L. rice straw using combined treatment by hydrogen peroxide and dilute sulfuric acid solution. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 00 (00):1–10. doi:10.1080/15567036.2019.1687617.
  • Dien, L. Q., N. T. M. Phuong, D. T. Hoa, and P. Huy Hoang. 2014. Efficient pretreatment of vietnamese rice straw by soda and sulfate cooking methods for enzymatic saccharification. Applied Biochemistry and Biotechnology 175:1536–47. doi:10.1007/s12010-014-1359-3.
  • Farzad, S., M. A. Mandegari, M. Guo, K. F. Haigh, N. Shah, and J. F. Görgens. 2017. Multi-product biorefineries from lignocelluloses: A pathway to revitalisation of the sugar industry? Biotechnology for Biofuels 10 (1):1–24. doi:10.1186/s13068-017-0761-9.
  • Hoang, P. H., and T. D. Cuong. 2021. Simultaneous direct production of 5-hydroxymethylfurfural (HMF) and furfural from corncob biomass using porous HSO3-ZSM-5 zeolite catalyst. Energy & Fuels 35 (1):546–51. doi:10.1021/acs.energyfuels.0c03431.
  • Ibrahim, H. A. H. 2012. Pretreatment of straw for bioethanol production. Energy Procedia 14:542–51. doi:10.1016/j.egypro.2011.12.973.
  • Lu, P., and Y. L. Hsieh. 2012. Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydrate Polymers 87 (1):564–73. doi:10.1016/j.carbpol.2011.08.022.
  • Manzanares, P. 2020. THE role of biorefinering research in the development of a modern bioeconomy. Acta Innovations 47 (37):47–56. doi:10.32933/ActaInnovations.37.4.
  • Morais, A. R. C., M. D. D. J. Matuchaki, J. Andreaus, and R. Bogel-Lukasik. 2016. A green and efficient approach to selective conversion of xylose and biomass hemicellulose into furfural in aqueous media using high-pressure CO2 as a sustainable catalyst. Green Chemistry 18 (10):2985–94. doi:10.1039/c6gc00043f.
  • Morais, A. R. C., J. V. Pinto, D. Nunes, L. B. Roseiro, M. C. Oliveira, E. Fortunato, and R. Bogel-Łukasik. 2016. Imidazole: Prospect solvent for lignocellulosic biomass fractionation and delignification. ACS Sustainable Chemistry & Engineering 4 (3):1643–52. doi:10.1021/acssuschemeng.5b01600.
  • Nandiyanto, A. B. D., T. Rahman, M. A. Fadhlulloh, A. G. Abdullah, I. Hamidah, and B. Mulyanti. 2016. Synthesis of silica particles from rice straw waste using a simple extraction method. IOP Conference Series: Materials Science and Engineering 128 (1). doi: 10.1088/1757-899X/128/1/012040.
  • Oun, A. A., and J. Rhim. 2016. Isolation of cellulose nanocrystals from grain straws and their use for the preparation of carboxymethyl cellulose-based nanocomposite films. Carbohydrate Polymers 150:187–200. doi:10.1016/j.carbpol.2016.05.020.
  • Phuong, N. T. M., P. H. Hoang, L. Q. Dien, and D. T. Hoa. 2017. Optimization of sodium sulfide treatment of rice straw to increase the enzymatic hydrolysis in bioethanol production. Clean Technologies and Environmental Policy 19 (5):1313–22. doi:10.1007/s10098-016-1329-2.
  • Pishnamazi, M., J. Iqbal, S. Shirazian, G. M. Walker, and M. N. Collins. 2019. Effect of lignin on the release rate of acetylsalicylic acid tablets. International Journal of Biological Macromolecules 124:354–59. doi:10.1016/j.ijbiomac.2018.11.136.
  • Rajak, R. C., P. Saha, M. Singhvi, D. Kwak, D. Kim, H. Lee, A. R. Deshmukh, Y. Bu, and B. S. Kim. 2021. An eco-friendly biomass pretreatment strategy utilizing reusable enzyme mimicking nanoparticles for lignin depolymerization and biofuel production. Green Chemistry 23 (15):5584–99. doi:10.1039/d1gc01456k.
  • Steinmetz, V., M. Villain-Gambier, A. Klem, I. Ziegler, S. Dumarcay, and D. Trebouet. 2020. Lignin carbohydrate complexes structure preserved throughout downstream processes for their valorization after recovery from industrial process water. International Journal of Biological Macromolecules 157:726–33. doi:10.1016/j.ijbiomac.2019.11.238.
  • Sun, L., and K. Gong. 2001. Silicon-based materials from rice husks and their applications. Industrial & Engineering Chemistry Research 40 (25):5861–77. doi:10.1021/ie010284b.
  • Yin, K., P. Divakar, and U. G. K. Wegst. 2019. Plant-derived nanocellulose as structural and mechanical reinforcement of freeze-cast chitosan scaffolds for biomedical applications. Biomacromolecules 20 (10):3733–45. doi:10.1021/acs.biomac.9b00784.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.