125
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental investigation of methane content on the oxidation characteristics and spontaneous combustion limit parameters of coal

ORCID Icon & ORCID Icon
Pages 1365-1379 | Received 11 Nov 2022, Accepted 04 Feb 2023, Published online: 17 Feb 2023

References

  • Baris, K., S. Kizgut, and V. Didari. 2012. Low-temperature oxidation of some Turkish coals. Fuel 93:423–32. doi:10.1016/j.fuel.2011.08.066.
  • Beamish, B. B., 2005. Factors affecting hot spot development in bulk coal and associated gas evolution factors affecting hot spot development in bulk coal and, in: Proceedings of the 2005 Coal Operators’ Conference, Mining Engineering, Australia. University of Wollongong pp. 187–94.
  • Deng, J., L. F. Ren, L. Ma, C. K. Lei, G. M. Wei, and W. F. Wang. 2018. Effect of oxygen concentration on low-temperature exothermic oxidation of pulverized coal. Thermochimica acta 667:102–10. doi:10.1016/j.tca.2018.07.012.
  • Deng, J., Y. Xiao, Q. Li, J. Lu, and H. Wen. 2015. Experimental studies of spontaneous combustion and anaerobic cooling of coal. Fuel 157:261–69. doi:10.1016/j.fuel.2015.04.063.
  • Guo, J., H. Wen, X. Zheng, Y. Liu, and X. Cheng. 2019. A method for evaluating the spontaneous combustion of coal by monitoring various gases. Process Safety and Environmental Protection 126:223–31. doi:10.1016/j.psep.2019.04.014.
  • Hu, X., Z. Yu, J. Cai, X. Jiang, P. Li, and S. Yang. 2022. Effects of methane on the development of free radical during coal spontaneous combustion in gob. SSRN Electronic Journal 330:125369. doi:10.1016/j.fuel.2022.125369.
  • Lin, B., Q. Li, and Y. Zhou. 2021. Research advances about multi-field evolution of coupled thermodynamic disasters in coal mine goaf. Meitan Xuebao/Journal China Coal Soc 46 (6):1715–26. doi:10.13225/j.cnki.jccs.HZ21.0264.
  • Liu, H., F. Wang, T. Ren, M. Qiao, and J. Yan. 2021. Influence of methane on the prediction index gases of coal spontaneous combustion: A case study in Xishan coalfield, China. Fuel 289:119852. doi:10.1016/j.fuel.2020.119852.
  • Li, J., Z. Xu, Z. Zhao, and S. Xu. 2022. Study on coal’s spontaneous combustion propensity based on the correlation between oxygen consumption and heat generation study on coal ’ s spontaneous combustion propensity based on. Combustion Science and Technology 1–16. doi:10.1080/00102202.2022.2101108.
  • Ma, L., R. Guo, Y. Gao, L. Ren, G. Wei, and C. Li. 2019. Study on coal spontaneous combustion characteristics under methane-containing atmosphere. Combustion Science and Technology 191 (8):1456–72. doi:10.1080/00102202.2018.1531286.
  • Ma, L., L. Zou, L. Ren, Y. Chung, P. Zhang, and C. Shu. 2020. Prediction indices and limiting parameters of coal spontaneous combustion in the Huainan mining area in China. Fuel 264:116883. doi:10.1016/j.fuel.2019.116883.
  • Song, W., S. Yang, C. Jiang, and J. Niu. 2012. Experimental research on the formation of CO during coal spontaneous combustion under the condition of methane-contained airflow. Meitan Xuebao/Journal China Coal Soc 37 (8):1320–25.
  • Su, H., F. Zhou, J. Li, and H. Qi. 2017. Effects of oxygen supply on low-temperature oxidation of coal: A case study of Jurassic coal in Yima, China. Fuel 202:446–54. doi:10.1016/j.fuel.2017.04.055.
  • Tang, Z., S. Yang, G. Xu, and M. Sharifzadeh. 2019. Disaster-causing mechanism and risk area classification method for composite disasters of gas explosion and coal spontaneous combustion in deep coal mining with narrow coal pillars. Process Safety and Environmental Protection 132:182–88. doi:10.1016/j.psep.2019.09.036.
  • Tao, S., Z. Pan, S. Chen, and S. Tang. 2019. Coal seam porosity and fracture heterogeneity of marcolithotypes in the Fanzhuang Block, southern Qinshui Basin, China. Journal of Natural Gas Science and Engineering 66:148–58. doi:10.1016/j.jngse.2019.03.030.
  • Wang, K., Z. Wang, X. Zhai, and H. Jiang. 2022. An experimental investigation of early warning index for coal spontaneous combustion with consideration of particle size: A case study. International Journal of Coal Preparation and Utilization 1–15. doi:10.1080/19392699.2022.2036730.
  • Wang, G., J. Xie, S. Xue, and H. Wang. 2015. Laboratory study on low-temperature coal spontaneous combustion in the air of reduced oxygen and low methane concentration. Tehnički vjesnik 22 (5):1319–25. doi:10.17559/TV-20150225022245.
  • Wang, J., Y. Zhang, S. Xue, J. Wu, Y. Tang, and L. Chang. 2018. Assessment of spontaneous combustion status of coal based on relationships between oxygen consumption and gaseous product emissions. Fuel Process Technol 179:60–71. doi:10.1016/j.fuproc.2018.06.015.
  • Xiao, Y., T. Guo, C. M. Shu, Q. W. Li, D. J. Li, and L. G. Chen. 2020. Effects of oxygen concentrations on the coal oxidation characteristics and functional groups. Journal of Thermal Analysis and Calorimetry 142 (2):899–912. doi:10.1007/s10973-020-09607-w.
  • Xia, T., F. Zhou, X. Wang, Y. Zhang, Y. Li, J. Kang, and J. Liu. 2016. Controlling factors of symbiotic disaster between coal gas and spontaneous combustion in longwall mining gobs. Fuel 182:886–96. doi:10.1016/j.fuel.2016.05.090.
  • Xu, H., Y. Qin, D. Yang, F. Zhang, F. Wu, and X. Chu. 2022. Modeling of diffusion kinetics during gas adsorption in a coal seam with a dimensionless inversion method. Fuel 326:125068. doi:10.1016/j.fuel.2022.125068.
  • Xu, H., G. Wang, C. Fan, X. Liu, and M. Wu. 2020. Grain-scale reconstruction and simulation of coal mechanical deformation and failure behaviors using combined SEM Digital Rock data and DEM simulator. Powder Technol 360:1305–20. doi:10.1016/j.powtec.2019.07.014.
  • Yang, S., Y. Qin, J. Sun, C. Jiang, and J. Lun. 2014. Research on coupling hazard mechanism of mine gas and coal fire for a gassy and high spontaneous combustion propensity coal seam. Meitan Xuebao/Journal China Coal Soc 39 (6):1094–101. doi:10.13225/j.cnki.jccs.2013.1013.
  • Yang, Y., L. Zenghua, L. Si, S. Hou, L. Zhiwei, and J. Li. 2018. Study on test method of heat release intensity and thermophysical parameters of loose coal. Fuel 229:34–43. doi:10.1016/j.fuel.2018.05.006.
  • Ye, J., S. Tao, S. Zhao, S. Li, S. Chen, and Y. Cui. 2022. Characteristics of methane adsorption/desorption heat and energy with respect to coal rank. Journal of Natural Gas Science and Engineering 99:104445. doi:10.1016/j.jngse.2022.104445.
  • Zeng, J., L. Fang, Q. Li, and Z. Feng. 2021. Assessment of coal spontaneous combustion prediction index gases for coal with different moisture content. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–13. doi:10.1080/15567036.2021.1900459.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.