168
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Thermal management of mini channel slotted fin heat sink using TiO2-H2O blend of anatase and rutile nanoparticles: experimental and numerical study

, , , & ORCID Icon
Pages 2174-2192 | Received 12 Oct 2022, Accepted 14 Feb 2023, Published online: 05 Mar 2023

References

  • Albadr, J., S. Tayal, and M. Alasadi. 2013. Heat transfer through heat exchanger using Al2O3 nanofluid at different concentrations. Case Studies in Thermal Engineering 1 (1):38–44. doi:10.1016/j.csite.2013.08.004.
  • Ali, H. M., and W. Arshad. 2015. Thermal performance investigation of staggered and inline pin fin heat sinks using water based rutile and anatase TiO2 nanofluids. Energy Convers Manag 106:793–803. doi:10.1016/j.enconman.2015.10.015.
  • Ali, M., A. A. Shoukat, H. A. Tariq, M. Anwar, and H. Ali. 2019. Header design optimization of mini-channel heat sinks using CuO–H2O and Al2O3–H2O nanofluids for thermal management. Arabian Journal for Science and Engineering 44 (12):10327–38. doi:10.1007/s13369-019-04022-2.
  • “Ansys Fluent Theory Guide,” no. July, 2022.
  • Anwar, M., H. A. Tariq, A. A. Shoukat, H. M. Ali, and H. Ali. 2020. Numerical study for heat transfer enhancement using CuO water nanofluids through mini-channel heat sinks for microprocessor cooling. Thermal Science 24 (5 Part A):2965–76. doi:10.2298/TSCI180722022A.
  • Arshad, W., and H. M. Ali. 2017. Experimental investigation of heat transfer and pressure drop in a straight minichannel heat sink using TiO2 nanofluid. International Journal of Heat and Mass Transfer 110:248–56. doi:10.1016/j.ijheatmasstransfer.2017.03.032.
  • Baig, T., Z. Rehman, H. A. Tariq, S. Manzoor, M. Ali, A. Wadood, K. Rajski, and H. Park. 2021. Thermal performance investigation of slotted fin minichannel heat sink for microprocessor cooling. Energies 14 (19):2021. doi:10.3390/en14196347.
  • Batchelor, G. K. 1977. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. Journal of Fluid Mechanics 83 (1):97–117. doi:10.1017/S0022112077001062.
  • Bhuvad, S. S., A. K. Patel, and S. P. S. Rajput, “Numerical analysis of micro-channel heat sink using ethylene glycol based nanofluid in case of electronics cooling,” in Journal of Physics: Conference Series, 2020, vol. 1473, no. 1, p. 12013.
  • Bobbo, S., L. Fedele, A. Benetti, L. Colla, M. Fabrizio, C. Pagura, and S. Barison. 2012. Viscosity of water based SWCNH and TiO2 nanofluids. Experimental Thermal and Fluid Science 36:65–71. doi:10.1016/j.expthermflusci.2011.08.004.
  • Chen, Z., Z. Feng, Q. Zhang, J. Zhang, and F. Guo. 2022. Effects of regular triangular prisms on thermal and hydraulic characteristics in a minichannel heat sink. International Journal of Heat and Mass Transfer 188:122583. doi:10.1016/j.ijheatmasstransfer.2022.122583.
  • Chen, T., Y. Wang, C. Qi, L. Chen, and Z. Tang. 2022. Effects of metal foam filling heights and tilt angles on the cooling performance of a heat sink filled with nanofluids. International Communications in Heat and Mass Transfer 138:106326. doi:10.1016/j.icheatmasstransfer.2022.106326.
  • Das, P. K., S. K. Dash, R. Ganguly, A. K. Santra, E. P. Venkatesan, A. A. Rajhi, S. Shaik, and A. Afzal. Sep 2022. Effect of particle loading and temperature on the rheological behavior of Al 2 O 3 and TiO 2 nanofluids. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44(3):7062–79. doi: 10.1080/15567036.2022.2103214.
  • Das, S., A. Giri, and S. Samanta. 2020 Feb. Heat transfer enhancement in a thermosyphon using TiO2 nanofluid through natural convection. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 1–18. doi:10.1080/15567036.2020.1727998.
  • Dixit, T., and I. Ghosh. 2013. Low Reynolds number thermo-hydraulic characterization of offset and diamond minichannel metal heat sinks. Experimental Thermal and Fluid Science 51:227–38. doi:10.1016/j.expthermflusci.2013.08.002.
  • Duangthongsuk, W., and S. Wongwises. 2009. Heat transfer enhancement and pressure drop characteristics of TiO2–water nanofluid in a double-tube counter flow heat exchanger. International Journal of Heat and Mass Transfer 52 (7–8):2059–67. doi:10.1016/j.ijheatmasstransfer.2008.10.023.
  • Hadi, F., H. M. Ali, and F. Siddique. 2022. Hydro thermal performance evaluation of super hydrophobic pin fin mini channel heat sink. Thermal Science 26 (4 Part B):9. doi:10.2298/TSCI210901009H.
  • Han, Z. 2008. Nanofluids with enhanced thermal transport properties. https://drum.lib.umd.edu/handle/1903/8654?show=full
  • Ho, C. J., L. C. Wei, and Z. W. Li. 2010. An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid. Applied Thermal Engineering 30 (2–3):96–103. doi:10.1016/j.applthermaleng.2009.07.003.
  • Hung, T. -C., Y. -X. Huang, and W. -M. Yan. 2013. Thermal performance analysis of porous-microchannel heat sinks with different configuration designs. International Journal of Heat and Mass Transfer 66:235–43. doi:10.1016/j.ijheatmasstransfer.2013.07.019.
  • Jajja, S. A., W. Ali, H. M. Ali, and A. M. Ali. 2014. Water cooled minichannel heat sinks for microprocessor cooling: Effect of fin spacing. Applied Thermal Engineering 64 (1–2):76–82. doi:10.1016/j.applthermaleng.2013.12.007.
  • Kavitha, T., A. Rajendran, and A. Durairajan. 2012. Synthesis, characterization of TiO2 nano powder and water based nanofluids using two step method. Journal of Applied Engineering Sciences 1 (4):235–40.
  • Khan, A., and M. Ali. 2022. Thermo-hydraulic behavior of alumina/silica hybrid nanofluids through a straight minichannel heat sink. Case Studies in Thermal Engineering 31:101838. doi:10.1016/j.csite.2022.101838.
  • Khoshvaght-Aliabadi, M., S. M. Hassani, and S. H. Mazloumi. 2017. Enhancement of laminar forced convection cooling in wavy heat sink with rectangular ribs and Al2O3/water nanofluids. Experimental Thermal and Fluid Science 89:199–210. doi:10.1016/j.expthermflusci.2017.08.017.
  • Khoshvaght-Aliabadi, M., O. Sartipzadeh, S. Pazdar, and M. Sahamiyan. 2017. Experimental and parametric studies on a miniature heat sink with offset-strip pins and Al2O3/water nanofluids. Applied Thermal Engineering 111:1342–52. doi:10.1016/j.applthermaleng.2016.10.035.
  • Kumar, V., and J. Sarkar. 2018. Two-phase numerical simulation of hybrid nanofluid heat transfer in minichannel heat sink and experimental validation. International Communications in Heat and Mass Transfer 91:239–47. doi:10.1016/j.icheatmasstransfer.2017.12.019.
  • Leena, M., and S. Srinivasan. 2015. Synthesis and ultrasonic investigations of titanium oxide nanofluids. Journal of Molecular Liquids 206:103–09. doi:10.1016/j.molliq.2015.02.001.
  • Mahmood, H., and B. Freegah. 2022. Investigating the effect of counter flow formation, ribs and dimples on the hydrothermal performance of the serpentine Mini-Channel Heat Sink (SMCHS). International Communications in Heat and Mass Transfer 139:106490. doi:10.1016/j.icheatmasstransfer.2022.106490.
  • Maxwell, J. C. 2010. A Treatise on Electricity and Magnetism (Cambridge Library Collection - Physical Sciences). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511709333.
  • Nada, S. A., R. M. El-Zoheiry, M. Elsharnoby, and O. S. Osman. 2022. Enhancing the thermal performance of different flow configuration minichannel heat sink using Al2O3 and CuO-water nanofluids for electronic cooling: An experimental assessment. International Journal of Thermal Sciences 181:107767. doi:10.1016/j.ijthermalsci.2022.107767.
  • Narendran, G., N. Gnanasekaran, and D. A. Perumal. 2020. Thermodynamic irreversibility and conjugate effects of integrated microchannel cooling device using TiO2 nanofluid. Heat and Mass Transfer 56 (2):489–505. doi:10.1007/s00231-019-02704-z.
  • Pak, B. C., and Y. I. Cho. 1998 Apr. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer 11(2):151–70. doi:10.1080/08916159808946559.
  • Rafati, M., A. A. Hamidi, and M. Shariati Niaser. 2012. Application of nanofluids in computer cooling systems (heat transfer performance of nanofluids). Applied Thermal Engineering 45-46:9–14. doi:10.1016/j.applthermaleng.2012.03.028.
  • Rea, U., T. McKrell, L. Hu, and J. Buongiorno. 2009. Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids. International Journal of Heat and Mass Transfer 52 (7–8):2042–48. doi:10.1016/j.ijheatmasstransfer.2008.10.025.
  • Roshani, M., S. Ziaeddin Miry, P. Hanafizadeh, and M. Ashjaee. 2015. Hydrodynamics and heat transfer characteristics of a miniature plate pin-fin heat sink utilizing Al2O3–water and TiO2–water nanofluids. Journal of Thermal Science and Engineering Applications 7 (3):31007. doi:10.1115/1.4030103.
  • Saleh, R., N. Putra, R. E. Wibowo, W. N. Septiadi, and S. P. Prakoso. 2014. Titanium dioxide nanofluids for heat transfer applications. Experimental Thermal and Fluid Science 52:19–29. doi:10.1016/j.expthermflusci.2013.08.018.
  • Schiller, L., and A. Naumann. 1935. “A drag coefcient correlation. Z Ver Deutsch Ing 77:318–20.
  • Shahsavar, A., P. Farhadi, Ç. Yıldız, M. Moradi, and M. Arıcı. 2022. Evaluation of entropy generation characteristics of boehmite-alumina nanofluid with different shapes of nanoparticles in a helical heat sink. International Journal of Mechanical Sciences 225:107338. doi:10.1016/j.ijmecsci.2022.107338.
  • Shahsavar, A., K. Moradi, Ç. Yıldız, P. Farhadi, and M. Arıcı. 2022. Effect of nanoparticle shape on cooling performance of boehmite-alumina nanofluid in a helical heat sink for laminar and turbulent flow regimes. International Journal of Mechanical Sciences 217:107045. doi:10.1016/j.ijmecsci.2021.107045.
  • Shahsavar, A., M. Shahmohammadi, M. Arıcı, and H. M. Ali. 2022 Dec. Extensive investigation of the fluid inlet/outlet position effects on the performance of micro pin-fin heatsink through simulation. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 44(4):9489–505. doi:10.1080/15567036.2022.2134518.
  • Sridhara, V., and L. N. Satapathy. 2011. Al2o3-based nanofluids: A review. Nanoscale Research Letters 6 (1):1–16. doi:10.1186/1556-276X-6-456.
  • Tajik, B., A. Abbassi, M. Saffar-Avval, and M. A. Najafabadi. 2012. Ultrasonic properties of suspensions of TiO2 and Al2O3 nanoparticles in water. Powder Technol 217:171–76. doi:10.1016/j.powtec.2011.10.024.
  • Tariq, H. A., M. Anwar, H. M. Ali, and J. Ahmed. 2021. Effect of dual flow arrangements on the performance of mini-channel heat sink: Numerical study. Journal of Thermal Analysis and Calorimetry 143 (3):2011–27. doi:10.1007/s10973-020-09617-8.
  • Tariq, H. A., M. Anwar, and A. Malik. 2020. Numerical investigations of mini-channel heat sink for microprocessor cooling: Effect of slab thickness. Arabian Journal for Science and Engineering 45 (7):5169–77. doi:10.1007/s13369-020-04370-4.
  • Tariq, H. A., A. Israr, Y. I. Khan, and M. Anwar. 2019. Numerical and experimental study of cellular structures as a heat dissipation media. Heat and Mass Transfer 55 (2):501–11. doi:10.1007/s00231-018-2439-7.
  • Tariq, H. A., A. A. Shoukat, M. Anwar, A. Israr, and H. M. Ali. 2020. Water cooled micro-hole cellular structure as a heat dissipation media: An experimental and numerical study. Thermal Science 24 (2 Part A):683–92. doi:10.2298/TSCI180219184T.
  • Tariq, H. A., A. A. Shoukat, M. Hassan, and M. Anwar. 2019. Thermal management of microelectronic devices using micro-hole cellular structure and nanofluids. Journal of Thermal Analysis and Calorimetry 136 (5):2171–82. doi:10.1007/s10973-018-7852-0.
  • Toprak, B. İ., S. B. Oskouei, Ö. Bayer, and İ. Solmaz. 2022. Experimental and numerical investigation of a novel pipe-network mini channel heatsink. International Communications in Heat and Mass Transfer 136:106212. doi:10.1016/j.icheatmasstransfer.2022.106212.
  • Tuckerman, D. B., and R. F. W. Pease. 1981. High-performance heat sinking for VLSI. IEEE Electron Device Letters 2 (5):126–29. doi:10.1109/EDL.1981.25367.
  • Upadhye, H. R. and S. G. Kandlikar, “Optimization of microchannel geometry for direct chip cooling using single phase heat transfer,” in International Conference on Nanochannels, Microchannels, and Minichannels, 2004, vol. 41642, pp. 679–85.
  • Wang, Z., H. Zhang, L. Yin, D. Yang, G. Yang, N. Akkurt, D. Liu, L. Zhu, Y. Qiang, F. Yu, et al. 2022. Experimental study on heat transfer properties of gravity heat pipes in single/hybrid nanofluids and inclination angles. Case Studies in Thermal Engineering 34:102064. doi:10.1016/j.csite.2022.102064.
  • Xie, X., W. -Q. Tao, and Y. He. Sep 2007. Numerical study of turbulent heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink. Journal of Electronic Packaging 129(3):247–55. doi: 10.1115/1.2753887.
  • Xuan, Y., and W. Roetzel. 2000. Conceptions for heat transfer correlation of nanofluids. International Journal of Heat and Mass Transfer 43 (19):3701–07. doi:10.1016/S0017-9310(99)00369-5.
  • Zakaria, I., W. H. Azmi, A. M. I. Mamat, R. Mamat, R. Saidur, S. F. Abu Talib, and W. A. N. W. Mohamed. 2016. Thermal analysis of Al2O3–water ethylene glycol mixture nanofluid for single PEM fuel cell cooling plate: An experimental study. International Journal of Hydrogen Energy 41 (9):5096–112. doi:10.1016/j.ijhydene.2016.01.041.
  • Zakaria, I. A., W. Mohamed, N. H. A. Azid, M. A. Suhaimi, and W. H. Azmi. 2022. Heat transfer and electrical discharge of hybrid nanofluid coolants in a fuel cell cooling channel application. Applied Thermal Engineering 210:118369. doi:10.1016/j.applthermaleng.2022.118369.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.