1,808
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Machine learning based renewable energy generation and energy consumption forecasting

, , & ORCID Icon
Pages 3266-3278 | Received 08 Dec 2022, Accepted 09 Mar 2023, Published online: 29 Mar 2023

References

  • Agrawal, H., A. Talwariya, A. Gill, A. Singh, H. Alyami, W. Alosaimi, and A. Ortega-Mansilla. 2022. A fuzzy-genetic-based integration of renewable energy sources and E-Vehicles. Resources Policy 15 (9):3300. doi:10.3390/en15093300.
  • Ahmad, S., A. Ahmad, M. Naeem, W. Ejaz, and H. S. Kim. 2018. A compendium of performance metrics, pricing schemes, optimization objectives, and solution methodologies of demand side management for the smart grid. Energies 11 (10):2801. doi:10.3390/en11102801.
  • Baldi, S., Korkas, M. Lv, and E. B. Kosmatopoulos. 2018. Automating occupant-building interaction via smart zoning of thermostatic loads: A switched self-tuning approach. Applied Energy 231:1246–58. Dec. doi: 10.1016/j.apenergy.2018.09.188.
  • Carley, S., E. Baldwin, L. M. MacLean, and J. N. Brass. 2017. Global expansion of renewable energy generation: An analysis of policy instruments. Environmental and Resource Economics 68 (2):397–440. doi:10.1007/s10640-016-0025-3.
  • Gard-Murray, A. 2022. De-risking decarbonization: Accelerating fossil fuel retirement by shifting costs to future winners. Global Environmental Politics 22 (4):70–94. doi:10.1162/glep_a_00689.
  • Ghaderi, A., B. M. Sanandaji, and F. Ghaderi. 2017. arXiv preprint arXiv:1707.08110, Deep forecast: Deep learning-based spatio-temporal forecasting. 1–6.
  • Johannesen, N. J., M. L. Kolhe, and M. Goodwin, “Load demand analysis of nordic rural area with holiday resorts for network capacity planning”, In 4th International Conference on Smart and Sustainable Technologies (SpliTech), Croatia, 2019a, pp. 1–7. IEEE.
  • Johannesen, N. J., M. L. Kolhe, and M. Goodwin. 2019b. Relative evaluation of regression tools for urban area electrical energy demand forecasting. Journal of Cleaner Production 218:555–64. doi:10.1016/j.jclepro.2019.01.108.
  • Johannesen, N. J., M. L. Kolhe, M. Goodwin, “Comparing recurrent neural networks using principal component analysis for electrical load predictions,” 2021 6th International Conference on Smart and Sustainable Technologies (SpliTech), Bol and Split, Croatia, 1–6, 2021.
  • Johannesen, N. J., M. L. Kolhe, and M. Goodwin. 2022. “Recurrent neural networks for electrical load forecasting to use in demand response”, chapter 3 of book ‘industrial demand response: Methods, best practices, case studies, and applications’, 41–58. UK: The Institution of Engineering and Technology.
  • Khan, Z. A., T. Hussain, I. U. Haq, F. U. M. Ullah, and S. W. Baik. 2022. Towards efficient and effective renewable energy prediction via deep learning. Energy Reports 8:10230–43. doi:10.1016/j.egyr.2022.08.009.
  • Liu, J., Q. Shi, R. Han, and J. Yang. 2021. A hybrid GA–PSO–CNN model for ultra-short-term wind power forecasting. Energies 14 (20):6500. doi:10.3390/en14206500.
  • Li, Y., W. Xue, T. Wu, H. Wang, B. Zhou, S. Aziz, and Y. He. 2021. Intrusion detection of cyber physical energy system based on multivariate ensemble classification. Energy 218:119505. doi:10.1016/j.energy.2020.119505.
  • Malakouti, S. M., A. R. Ghiasi, A. A. Ghavifekr, and P. Emami. 2022. Predicting wind power generation using machine learning and CNN-LSTM approaches. Wind Engineering 46 (6):0309524X221113013. doi:10.1177/0309524X221113013.
  • Mathew, M. S., M. L. Kolhe, “Performance modelling of renewable energy systems using kNN algorithm for smart grid applications,” 2022 7th International Conference on Smart and Sustainable Technologies (SpliTech), Split/Bol, Croatia, 1–4, 2022.
  • Nam, K., S. Hwangbo, and C. Yoo. 2020. A deep learning-based forecasting model for renewable energy scenarios to guide sustainable energy policy: A case study of Korea. Renewable and Sustainable Energy Reviews 122:109725. doi:10.1016/j.rser.2020.109725.
  • Singh, P., A. Talwariya, and M. Kolhe. Aug 2019b. Demand response management in the presence of renewable energy sources using stackelberg game theory. In IOP Conference Series: Materials Science and Engineering. Vol. 605(1), 012004. IOP Publishing
  • Talwariya, A., and P. Singh. Feb 2018. Demand side management: A survey of SPT & TOU. International Journal of Creative Research Thoughts 6(1):1675–78.
  • Talwariya, A., P. Singh, M. D. Brinda, J. Jobanputra, & M. L. Kolhe, “Domestic energy consumption forecasting using machine learning”, In 2022 7th International Conference on Smart and Sustainable Technologies (SpliTech), Croatia. pp. 1–4. July 2022, IEEE.
  • Talwariya, A., P. Singh, and M. Kolhe. 2019. A stepwise power tariff model with game theory based on monte-carlo simulation and its applications for household, agricultural, commercial and industrial consumers. International Journal of Electrical Power & Energy Systems vil. 111:14–24. Oct. doi: 10.1016/j.ijepes.2019.03.058.
  • Talwariya, A., P. Singh, and M. L. Kolhe. 2021. Stackelberg game theory based energy management systems in the presence of renewable energy sources. IETE Journal of Research 67 (5):611–19. doi:10.1080/03772063.2020.1869109.
  • Talwariya, A., P. Singh, and M. L. Kolhe. 2022. A stackelberg game theory based demand response algorithm for domestic consumers. Electric Power Components & Systems 50 (19–20):1186–99. doi:10.1080/15325008.2022.2150914.
  • Talwariya, A., P. Singh, M. Kolhe, and J. H. Jobanputra. May 2020. Fuzzy logic controller and game theory based distributed energy resources allocation. AIMS Energy 8(3):474–92. doi: 10.3934/energy.2020.3.474.
  • Talwariya, A., P. Singh, M. Kolhe and S. K. Sharma, “A game theory approach and tariff strategy for demand side management”, 3rd International Conference and Workshops on Recent Advances and Innovations in Engineering (ICRAIE), Jaipur, India. (pp. 1–5). IEEE, Nov. 2018.
  • Wang, H., R. Cai, B. Zhou, S. Aziz, B. Qin, N. Voropai, E. Barakhtenko, and E. Barakhtenko. 2020. Solar irradiance forecasting based on direct explainable neural network. Energy Conversion and Management 226:113487. doi:10.1016/j.enconman.2020.113487.
  • Wang, H., Z. Lei, X. Zhang, B. Zhou, and J. Peng. 2019. A review of deep learning for renewable energy forecasting. Energy Conversion and Management 198:111799. doi:10.1016/j.enconman.2019.111799.
  • Zhang, R., G. Li, S. Bu, G. Kuang, W. He, Y. Zhu, and S. Aziz. 2022. A hybrid deep learning model with error correction for photovoltaic power forecasting. Frontiers in Energy Research 1103. doi:10.3389/fenrg.2022.948308.
  • Zhang, C., H. Zhai, L. Cao, X. Li, F. Cheng, L. Peng, X. Wang, J. Meng, L. Yang, and X. Wang. 2022. Understanding the complexity of existing fossil fuel power plant decarbonization. Iscience 25 (8):104758. doi:10.1016/j.isci.2022.104758.