135
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Entropy generation and thermohydraulics of mixed convection of hybrid-nanofluid in a vertical tube fitted with elliptical‑cut twisted tape inserts - a computational study

, , & ORCID Icon
Pages 3369-3391 | Received 27 Jan 2023, Accepted 10 Mar 2023, Published online: 09 Apr 2023

References

  • Abdelmeguid, A., and D. Spalding. 1979. Turbulent flow and heat transfer in pipes with buoyancy effects. Journal of Fluid Mechanics 94 (2):383–400. doi:10.1017/S0022112079001087.
  • Aberoumand, S., and A. Jafarimoghaddam. 2016. Mixed convection heat transfer of nanofluids inside curved tubes: An experimental study. Applied Thermal Engineering 108:967–79. doi:10.1016/j.applthermaleng.2016.06.032.
  • Ahmadi, K., S. Khanmohammadi, S. Khanmohammadi, M. Bahiraei, and Q. -V. Bach. 2020. Heat transfer assessment of turbulent nanofluid flow in a circular pipe fitted with elliptical-cut twisted tape inserts. Journal of Thermal Analysis and Calorimetry 147 (1):1–14. doi:10.1007/s10973-020-10338-1.
  • Al-Rashed, A. A., R. Ranjbarzadeh, S. Aghakhani, M. Soltanimehr, M. Afrand, and T. K. Nguyen. 2019. Entropy generation of boehmite alumina nanofluid flow through a minichannel heat exchanger considering nanoparticle shape effect. Physica A: Statistical Mechanics and Its Applications 521:724–36. doi:10.1016/j.physa.2019.01.106.
  • Alshare, A., W. Al-Kouz, and W. Khan. 2020. Cu-Al2O3 water hybrid nanofluid transport in a periodic structure. Processes 8 (3):285. doi:10.3390/pr8030285.
  • Anuar, N. S., N. Bachok, and I. Pop. 2020. Cu-Al2O3/water hybrid nanofluid stagnation point flow past MHD stretching/shrinking sheet in presence of homogeneous-heterogeneous and convective boundary conditions. Mathematics 8 (8):1237. doi:10.3390/math8081237.
  • Bahiraei, M., M. Jamshidmofid, and S. Heshmatian. 2017. Entropy generation in a heat exchanger working with a biological nanofluid considering heterogeneous particle distribution. Advanced Powder Technology 28 (9):2380–92. doi:10.1016/j.apt.2017.06.021.
  • Barozzi, G. S., E. Zanchini, and M. Mariotti. 1985. Experimental investigation of combined forced and free convection in horizontal and inclined tubes. Meccanica 20 (1):18–27. doi:10.1007/BF02337057.
  • Bejan, A. 2013. Convection heat transfer. New Jersey: John wiley & sons.
  • Bejan, A., and J. Kestin. 1983. Entropy generation through heat and fluid flow. Journal of Applied Mechanics 50 (2):475. doi:10.1115/1.3167072.
  • Bejan, A., and S. Lorente. 2012. The physics of spreading ideas. International Journal of Heat and Mass Transfer 55 (4):802–07. doi:10.1016/j.ijheatmasstransfer.2011.10.029.
  • Bergman, T. L., T. L. Bergman, F. P. Incropera, D. P. Dewitt, and A. S. Lavine. 2011. Fundamentals of heat and mass transfer. New York: John Wiley & Sons.
  • Bergman, T. L., A. S. Lavine, F. P. Incropera, and D. P. DeWitt. 2011. Introduction to heat transfer. United States: John Wiley & Sons.
  • Esfahani, J., M. Akbarzadeh, S. Rashidi, M. Rosen, and R. Ellahi. 2017. Influences of wavy wall and nanoparticles on entropy generation over heat exchanger plat. International Journal of Heat and Mass Transfer 109:1162–71. doi:10.1016/j.ijheatmasstransfer.2017.03.006.
  • Farouk, B., and K. S. Ball. 1985. Convective flows around a rotating isothermal cylinder. International Journal of Heat and Mass Transfer 28 (10):1921–35. doi:10.1016/0017-9310(85)90214-5.
  • Fluent, I. 2006. FLUENT user’s guide 6.3. Lebanon, USA: Fluent Inc.
  • Galvez, M., P. G. Loutzenhiser, I. Hischier, and A. Steinfeld. 2008. CO2 splitting via two-step solar thermochemical cycles with Zn/ZnO and FeO/Fe3O4 redox reactions: Thermodynamic analysis. Energy & Fuels 22 (5):3544–50. doi:10.1021/ef800230b.
  • Ghadikolaei, S., M. Yassari, H. Sadeghi, K. Hosseinzadeh, and D. Ganji. 2017. Investigation on thermophysical properties of Tio2–Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow. Powder Technology 322:428–38. doi:10.1016/j.powtec.2017.09.006.
  • Ghajar, A. J., and L. -M. Tam. 1995. Flow regime map for a horizontal pipe with uniform wall heat flux and three inlet configurations. Experimental Thermal and Fluid Science 10 (3):287–97. doi:10.1016/0894-1777(94)00107-J.
  • Ghasemi, B., and S. Aminossadati. 2010. Periodic natural convection in a nanofluid-filled enclosure with oscillating heat flux. International Journal of Thermal Sciences 49 (1):1–9. doi:10.1016/j.ijthermalsci.2009.07.020.
  • Hooman, K. 2006. Entropy-energy analysis of forced convection in a porous-saturated circular tube considering temperature-dependent viscosity effects. International Journal of Exergy 3 (4):436–51. doi:10.1504/IJEX.2006.010235.
  • Ibáñez, G., S. Cuevas, and M. L. de Haro. 2003. Minimization of entropy generation by asymmetric convective cooling. International Journal of Heat and Mass Transfer 46 (8):1321–28. doi:10.1016/S0017-9310(02)00420-9.
  • Iqbal, M., and J. Stachiewicz. 1966. Influence of tube orientation on combined free and forced laminar convection heat transfer. Journal of Heat Transfer 88 (1):109–16. doi:10.1115/1.3691452.
  • Joye, D. D., J. P. Bushinsky, and P. E. Saylor. 1989. Mixed convection heat transfer at high Grashof number in a vertical tube. Industrial & Engineering Chemistry Research 28 (12):1899–903. doi:10.1021/ie00096a025.
  • Kakaç, S., R. K. Shah, and W. Aung. 1987. Handbook of single-phase convective heat transfer.
  • Karwe, M. V., and I. Deo. 2003. Grashof number. Encyclopedia of Agricultural, Food, and Biological Engineering 1 (1):454–56.
  • Khfagi, A. M., G. Hunt, M. C. Paul, and N. Karimi. 2022. Computational analysis of heat transfer augmentation and thermodynamic irreversibility of hybrid nanofluids in a tube fitted with classical and elliptical‑cut twisted tape inserts. Journal of Thermal Analysis and Calorimetry 147 (21):1–18. doi:10.1007/s10973-022-11418-0.
  • Lin, W., and T. Lin. 1996. Unstable aiding and opposing mixed convection of air in a bottom-heated rectangular duct slightly inclined from the horizontal. Journal of Heat Transfer 118 (1):47–55. doi:10.1115/1.2824066.
  • Mansour, R. B., N. Galanis, and C. T. Nguyen. 2007. Effect of uncertainties in physical properties on forced convection heat transfer with nanofluids. Applied Thermal Engineering 27 (1):240–49. doi:10.1016/j.applthermaleng.2006.04.011.
  • Maughan, J., and F. P. Incropera. 1987. Experiments on mixed convection heat transfer for airflow in a horizontal and inclined channel. International Journal of Heat and Mass Transfer 30 (7):1307–18. doi:10.1016/0017-9310(87)90163-3.
  • Mehryan, S. A., F. M. Kashkooli, M. Ghalambaz, and A. J. Chamkha. 2017. Free convection of hybrid Al2O3-Cu water nanofluid in a differentially heated porous cavity. Advanced Powder Technology 28 (9):2295–305. doi:10.1016/j.apt.2017.06.011.
  • Meyer, J. P., and M. Everts. 2018. Single-phase mixed convection of developing and fully developed flow in smooth horizontal circular tubes in the laminar and transitional flow regimes. International Journal of Heat and Mass Transfer 117:1251–73. doi:10.1016/j.ijheatmasstransfer.2017.10.070.
  • Mirmasoumi, S., and A. Behzadmehr. 2008. Effect of nanoparticles mean diameter on mixed convection heat transfer of a nanofluid in a horizontal tube. International Journal of Heat and Fluid Flow 29 (2):557–66. doi:10.1016/j.ijheatfluidflow.2007.11.007.
  • Mohammed, H. A. 2008. Laminar mixed convection heat transfer in a vertical circular tube under buoyancy-assisted and opposed flows. Energy Conversion and Management 49 (8):2006–15. doi:10.1016/j.enconman.2008.02.009.
  • Mwesigye, A., T. Bello-Ochende, and J. P. Meyer. 2014. Minimum entropy generation due to heat transfer and fluid friction in a parabolic trough receiver with non-uniform heat flux at different rim angles and concentration ratios. Energy 73:606–17. doi:10.1016/j.energy.2014.06.063.
  • Nimmagadda, R., and K. Venkatasubbaiah. 2015. Conjugate heat transfer analysis of micro-channel using novel hybrid nanofluids (Al2o3+ Ag/Water). European Journal of Mechanics - B/fluids 52:19–27. doi:10.1016/j.euromechflu.2015.01.007.
  • Oliveski, R. D. C., M. H. Macagnan, and J. B. Copetti. 2009. Entropy generation and natural convection in rectangular cavities. Applied Thermal Engineering 29 (8–9):1417–25. doi:10.1016/j.applthermaleng.2008.07.012.
  • Oni, T. O., and M. C. Paul. 2014. Numerical simulation of turbulent heat transfer and fluid flow in different tube designs.
  • Oni, T. O., and M. C. Paul. 2015. Assessment of mixed convection heat transfer in a flow through an induced tube. International Invention Journal of Engineering Science and Technology 2:17–30.
  • Oni, T. O., and M. C. Paul. 2016. Numerical investigation of heat transfer and fluid flow of water through a circular tube induced with divers’ tape inserts. Applied Thermal Engineering 98:157–68. doi:10.1016/j.applthermaleng.2015.12.039.
  • Ozsunar, A., S. Baskaya, and M. Sivrioglu. 2001. Numerical analysis of Grashof number, Reynolds number and inclination effects on mixed convection heat transfer in rectangular channels. International Communications in Heat and Mass Transfer 28 (7):985–94. doi:10.1016/S0735-1933(01)00302-5.
  • Paoletti, S., F. Rispoli, and E. Sciubba (1989). Calculation of exergetic losses in compact heat exchanger passages. Paper presented at the ASME Aes.
  • Patankar, S. V., and D. B. Spalding. 1983. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. In Numerical prediction of flow, heat transfer, turbulence and combustion, ed.Brian, Dudley, 54–73. USA: Elsevier.
  • Patil, S., and P. Vijay Babu. 2012. Experimental studies on mixed convection heat transfer in laminar flow through a plain square duct. Heat and Mass Transfer 48 (12):2013–21. doi:10.1007/s00231-012-1047-1.
  • Piva, S., G. S. Barozzi, and M. Collins. 1995. Combined convection and wall conduction effects in laminar pipe flow: Numerical predictions and experimental validation under uniform wall heating. Heat and Mass Transfer 30 (6):401–09. doi:10.1007/BF01647444.
  • Polidori, G., S. Fohanno, and C. Nguyen. 2007. A note on heat transfer modelling of Newtonian nanofluids in laminar free convection. International Journal of Thermal Sciences 46 (8):739–44. doi:10.1016/j.ijthermalsci.2006.11.009.
  • Qureshi, M. A., S. Hussain, and M. A. Sadiq. 2021. Numerical simulations of MHD mixed convection of hybrid nanofluid flow in a horizontal channel with cavity: Impact on heat transfer and hydrodynamic forces. Case Studies in Thermal Engineering 27:101321. doi:10.1016/j.csite.2021.101321.
  • Rahmati, A. R., A. R. Roknabadi, and M. Abbaszadeh. 2016. Numerical simulation of mixed convection heat transfer of nanofluid in a double lid-driven cavity using lattice Boltzmann method. Alexandria Engineering Journal 55 (4):3101–14. doi:10.1016/j.aej.2016.08.017.
  • Rashidi, M. M., M. Nasiri, M. Khezerloo, and N. Laraqi. 2016. Numerical investigation of magnetic field effect on mixed convection heat transfer of nanofluid in a channel with sinusoidal walls. Journal of Magnetism and Magnetic Materials 401:159–68. doi:10.1016/j.jmmm.2015.10.034.
  • Saysroy, A., and S. Eiamsa-Ard. 2017. Periodically fully-developed heat and fluid flow behaviors in a turbulent tube flow with square-cut twisted tape inserts. Applied Thermal Engineering 112:895–910. doi:10.1016/j.applthermaleng.2016.10.154.
  • Shahsavar, A., M. Moradi, and M. Bahiraei. 2018. Heat transfer and entropy generation optimization for flow of a non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles in a concentric annulus. Journal of the Taiwan Institute of Chemical Engineers 84:28–40. doi:10.1016/j.jtice.2017.12.029.
  • Sheikholeslami, M., M. Jafaryar, and Z. Li. 2018. Second law analysis for nanofluid turbulent flow inside a circular duct in presence of twisted tape turbulators. Journal of Molecular Liquids 263:489–500. doi:10.1016/j.molliq.2018.04.147.
  • Shih, T. -H. 1993. A realizable Reynolds stress algebraic equation model, Vol. 105993. New York: Lewis Research Center, Institute for Computational Mechanics in Propulsion.
  • Singh, P. K., K. Anoop, T. Sundararajan, and S. K. Das. 2010. Entropy generation due to flow and heat transfer in nanofluids. International Journal of Heat and Mass Transfer 53 (21–22):4757–67. doi:10.1016/j.ijheatmasstransfer.2010.06.016.
  • Taher, R., M. M. Ahmed, Z. Haddad, and C. Abid. 2021. Poiseuille-Rayleigh-Bénard mixed convection flow in a channel: Heat transfer and fluid flow patterns. International Journal of Heat and Mass Transfer 180:121745. doi:10.1016/j.ijheatmasstransfer.2021.121745.
  • Takabi, B., and S. Salehi. 2014. Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid. Advances in Mechanical Engineering 6:147059. doi:10.1155/2014/147059.
  • Vajjha, R. S., and D. K. Das (2008). Measurements of specific heat and density of Al 2 O 3 nanofluid. Paper presented at the AIP Conference Proceedings, USA.
  • Varol, Y., H. F. Oztop, and A. Koca. 2008. Entropy production due to free convection in partially heated isosceles triangular enclosures. Applied Thermal Engineering 28 (11–12):1502–13. doi:10.1016/j.applthermaleng.2007.08.013.
  • Versteeg, H. K., and W. Malalasekera. 2007. An introduction to computational fluid dynamics: The finite volume method. United Kingdom: Pearson education.
  • Yan, W. -M. 1994. Mixed convection heat and mass transfer in inclined rectangular ducts. International Journal of Heat and Mass Transfer 37 (13):1857–66. doi:10.1016/0017-9310(94)90326-3.
  • Zadeh, S. M. H., S. Mehryan, M. S. Islam, and M. Ghalambaz. 2020. Irreversibility analysis of thermally driven flow of a water-based suspension with dispersed nano-sized capsules of phase change material. International Journal of Heat and Mass Transfer 155:119796. doi:10.1016/j.ijheatmasstransfer.2020.119796.
  • Zimparov, V. 2001. Extended performance evaluation criteria for enhanced heat transfer surfaces: Heat transfer through ducts with constant heat flux. International Journal of Heat and Mass Transfer 44 (1):169–80. doi:10.1016/s0017-9310(00)00074-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.