125
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental study on a channel-embedded sensible thermal energy storage unit with the heat storage body immersed in heat-conducting oil

, , , , , , & ORCID Icon show all
Pages 3392-3408 | Received 03 Jan 2023, Accepted 24 Feb 2023, Published online: 04 Apr 2023

References

  • Afsharpanah, F., M. Izadi, F. A. Hamedani, S. S. Mousavi Ajarostaghi, and W. Yaïci. 2022. Solidification of nano-enhanced PCM-porous composites in a cylindrical cold thermal energy storage enclosure. Case Studies in Thermal Engineering. 39:1DUMMY. InternetAvailable from. doi:10.1016/j.csite.2022.102421.
  • Afsharpanah, F., S. S. Mousavi Ajarostaghi, and M. Arıcı. 2022. Parametric study of phase change time reduction in a shell-and-tube ice storage system with anchor-type fin design. International Communications in Heat and Mass Transfer 137. InternetAvailable from:106281. doi:10.1016/j.icheatmasstransfer.2022.106281.
  • Afsharpanah, F., K. Pakzad, S. S. Mousavi Ajarostaghi, and M. Arıcı. 2022. Assessment of the charging performance in a cold thermal energy storage container with two rows of serpentine tubes and extended surfaces. Journal of Energy Storage 51:104464. InternetAvailable from. doi:10.1016/j.est.2022.104464.
  • Afsharpanah, F., K. Pakzad, S. S. Mousavi Ajarostaghi, S. Poncet, and K. Sedighi. 2022. Accelerating the charging process in a shell and dual coil ice storage unit equipped with connecting plates. International Journal Of Energy Research 46 (6):7460–78. doi:10.1002/er.7654.
  • Alva, G., Y. Lin, and G. Fang. 2018. An overview of thermal energy storage systems. Energy 144:341–78. InternetAvailable from. doi:10.1016/j.energy.2017.12.037.
  • Alva, G., L. Liu, X. Huang, and G. Fang. 2017. Thermal energy storage materials and systems for solar energy applications. Renewable and Sustainable Energy Reviews [Internet] 68:693–706. Available from. doi:10.1016/j.rser.2016.10.021.
  • Bruch, A., S. Molina, T. Esence, J. F. Fourmigué, and R. Couturier. 2017. Experimental investigation of cycling behaviour of pilot-scale thermal oil packed-bed thermal storage system. Renewable Energy 103:277–85. doi:10.1016/j.renene.2016.11.029.
  • Chel, A., and G. Kaushik. 2018. Renewable energy technologies for sustainable development of energy efficient building. Alexandria Engineering Journal, 57 (2):655–69. InternetAvailable from. doi:10.1016/j.aej.2017.02.027.
  • Hoffmann, J. F., T. Fasquelle, V. Goetz, and X. Py. 2017. Experimental and numerical investigation of a thermocline thermal energy storage tank. Applied Thermal Engineering 114:896–904. doi:10.1016/j.applthermaleng.2016.12.053.
  • Jian, Y., Q. Falcoz, P. Neveu, F. Bai, Y. Wang, and Z. Wang. 2015. Design and optimization of solid thermal energy storage modules for solar thermal power plant applications. Applied Energy 139:30–42. InternetAvailable from. doi:10.1016/j.apenergy.2014.11.019.
  • John, E., M. Hale, and P. Selvam. 2013. Concrete as a thermal energy storage medium for thermocline solar energy storage systems. Solar Energy 96. InternetAvailable from:194–204. doi:10.1016/j.solener.2013.06.033.
  • Koçak, B., A. I. Fernandez, and H. Paksoy. 2020. Review on sensible thermal energy storage for industrial solar applications and sustainability aspects. Solar Energy 209. InternetAvailable from:135–69. doi:10.1016/j.solener.2020.08.081.
  • Kocak, B., and H. Paksoy. 2020. Performance of laboratory scale packed-bed thermal energy storage using new demolition waste based sensible heat materials for industrial solar applications. Solar Energy 211. InternetAvailable from:1335–46. doi:10.1016/j.solener.2020.10.070.
  • Kumar, R., A. K. Pathak, M. Kumar, and A. K. Patil. 2021. Experimental study of multi tubular sensible heat storage system fitted with wire coil inserts. Renewable Energy 164:1244–53. InternetAvailable from. doi:10.1016/j.renene.2020.10.058.
  • Kumar, R., A. K. Pathak, A. K. Patil, and M. Kumar. 2020. An experimental investigation of sensible heat storage system with multi-tubular cavities. Energy Sources, Part A Recover Util Environ Eff 00:1–13. InternetAvailable from. doi:10.1080/15567036.2020.1774683.
  • Kumar, R., A. K. Patil, and M. Kumar. 2021. Charging and discharging characteristics of sensible energy storage system with multiple cylindrical passages. Journal of Energy Resources Technology, Transactions ASME 143 (9). doi:10.1115/1.4051395.
  • Lugolole, R., A. Mawire, K. A. Lentswe, D. Okello, and K. Nyeinga. 2018. Thermal performance comparison of three sensible heat thermal energy storage systems during charging cycles. Sustainable Energy Technologies and Assessments 30:37–51. InternetAvailable from. doi:10.1016/j.seta.2018.09.002.
  • Marti, L., and R. Puertas. 2022. Sustainable energy development analysis: Energy TRILEMma. Entrepreneurship and Sustainability, 1 (1):100007. InternetAvailable from. doi:10.1016/j.stae.2022.100007.
  • Moffat, R. J. 1982. Contributions to the theory of single-sample uncertainty analysis. Journal of Fluids Engineering, Transactions ASME 104 (2):250–58. doi:10.1115/1.3241818.
  • Nordbeck, J., S. Bauer, and C. Beyer. 2019. Experimental characterization of a lab-scale cement based thermal energy storage system. Applied Energy 256. InternetAvailable from:113937. doi:10.1016/j.apenergy.2019.113937.
  • Rao, C. R. C., H. Niyas, and P. Muthukumar. 2018. Performance tests on lab–scale sensible heat storage prototypes. Applied Thermal Engineering 129. InternetAvailable from:953–67. doi:10.1016/j.applthermaleng.2017.10.085.
  • Skinner, J. E., M. N. Strasser, B. M. Brown, and R. Panneer Selvam. 2014. Testing of high-performance concrete as a thermal energy storage medium at high temperatures. Journal of Solar Energy Engineering, Transactions ASME 136 (2):1–6. doi:10.1115/1.4024925.
  • Tay, N. H. S., M. Belusko, and F. Bruno. 2012. An effectiveness-NTU technique for characterising tube-in-tank phase change thermal energy storage systems. Applied Energy, 91 (1):309–19. InternetAvailable from. doi:10.1016/j.apenergy.2011.09.039.
  • Vigneshwaran, K., G. Singh Sodhi, P. Muthukumar, and S. Subbiah. 2019. Concrete based high temperature thermal energy storage system: Experimental and numerical studies. Energy Conversion and Management 198:111905. InternetAvailable from. doi:10.1016/j.enconman.2019.111905.
  • Wu, M., M. Li, C. Xu, Y. He, and W. Tao. 2014. The impact of concrete structure on the thermal performance of the dual-media thermocline thermal storage tank using concrete as the solid medium. Applied Energy 113:1363–71. InternetAvailable from. doi:10.1016/j.apenergy.2013.08.044.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.