216
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Two novel Schiff bases derived from 3-amino-1,2,4-triazole as corrosion inhibitors for carbon steel pipelines during acidizing treatment of oil wells: Laboratory and theoretical studies

ORCID Icon, , , , &
Pages 3246-3265 | Received 06 Dec 2022, Accepted 14 Mar 2023, Published online: 31 Mar 2023

References

  • Aatiaoui, A. E. L., M. Koudad, T. Chelfi, S. Erkan, M. Azzouzi, A. Aouniti, K. SAVAŞ, M. Kaddouri, N. Benchat, and A. Oussaid. 2021. Experimental and theoretical study of new Schiff bases based on imidazo(1,2-a)pyridine as corrosion inhibitor of mild steel in 1M HCl. Journal of Molecular Structure 1226:129372. doi:10.1016/j.molstruc.2020.129372.
  • Abbas, M. A., E. I. Arafa, E. S. Gad, M. A. Bedair, O. E. El-Azabawy, and H. I. Al-Shafey. 2022. Performance assessment by experimental and Theoretical approaches of newly synthetized benzyl amide derivatives as corrosion inhibitors for carbon steel in 1.0 M hydrochloric acid environment. Inorganic Chemistry Communications 143:109758. doi:10.1016/j.inoche.2022.109758.
  • Abdallah, M., M. Alfakeer, H. M. Altass, A. M. Alharbi, I. Althagafi, N. F. Hasan, and E. M. Mabrouk. 2019. The polarographic and corrosion inhibition performance of some Schiff base compounds derived from 2-amino-3-hydroxypyridine in aqueous media. Egyptian Journal of Petroleum 28 (4):393–99. doi:10.1016/j.ejpe.2019.09.002.
  • Abubshait, H. A., A. A. Farag, M. A. El-Raouf, N. A. Negm, and E. A. Mohamed. 2021. Graphene oxide modified thiosemicarbazide nanocomposite as an effective eliminator for heavy metal ions. Journal of Molecular Liquids 327:114790. doi:10.1016/j.molliq.2020.114790.
  • Albrakaty, R. H., N. A. Wazzan, and I. B. Obot. 2018. Theoretical study of the mechanism of corrosion inhibition of carbon steel in acidic solution by 2-aminobenzothaizole and 2-Mercatobenzothiazole. International Journal of Electrochemical Science 13:3535–54. doi:10.20964/2018.04.50.
  • Ali, A., M. Pervaiz, Z. Saeed, U. Younas, R. Bashir, S. Ullah, S. M. Bukhari, F. Ali, S. Jelani, A. Rashid, et al. 2022. Synthesis and biological evaluation of 4-dimethylaminobenzaldehyde derivatives of Schiff bases metal complexes: A review. Inorganic Chemistry Communications 145:109903. doi:10.1016/j.inoche.2022.109903.
  • Almehmadi, M. A., A. Aljuhani, S. Y. Alraqa, I. Ali, N. Rezki, M. R. Aouad, and M. Hagar. 2021. Design, synthesis, DNA binding, modeling, anticancer studies and DFT calculations of Schiff bases tethering benzothiazole-1,2,3-triazole conjugates. Journal of Molecular Structure 1225:129148. doi:10.1016/j.molstruc.2020.129148.
  • Al-Sabagh, A. M., M. I. Abdou, M. A. Migahed, A. M. Fadl, A. A. Farag, M. M. Mohammedy, S. Abd-Elwanees, and A. Deiab. 2018. Influence of ilmenite ore particles as pigment on the anticorrosion and mechanical performance properties of polyamine cured epoxy for internal coating of gas transmission pipelines. Egyptian Journal of Petroleum 27 (4):427–36. doi:10.1016/j.ejpe.2017.07.005.
  • Altalhi, A., H. Hashem, N. Negm, E. Mohamed, and E. Azmy. 2021. Synthesis, characterization, computational study, and screening of novel 1-phenyl-4-(2-phenylacetyl)-thiosemicarbazide derivatives for their antioxidant and antimicrobial activities. Journal of Molecular Liquids 333:115977. doi:10.1016/j.molliq.2021.115977.
  • Altalhi, A. A., E. A. Mohamed, S. M. Morsy, M. T. H. Abou Kana, and N. A. Negm. 2021. Catalytic manufacture and characteristic valuation of biodiesel-biojet achieved from Jatropha curcas and waste cooking oils over chemically modified montmorillonite clay. Journal of Molecular Liquids 340:117175. doi:10.1016/j.molliq.2021.117175.
  • Altalhi, A. A., E. A. Mohammed, S. M. I. Morsy, and N. A. Negm. 2021. Augmentation of polyethylene terephthalate reusability as efficient corrosion inhibitors in oilfield protection: synthesis, evaluation, and antibacterial study. Protection of Metals and Physical Chemistry of Surfaces 57 (6):1242–50. doi:10.1134/S2070205121060022.
  • Altalhi, A. A., S. M. Morsy, M. T. H. Abou Kana, N. A. Negm, and E. A. Mohamed. 2021. Pyrolytic conversion of waste edible oil into biofuel using sulphonated modified alumina. Alexandria Engineering Journal 61 (6):4847–61. doi:10.1016/j.aej.2021.10.038.
  • Amer, A., G. H. Sayed, R. M. Ramadan, A. M. Rabie, N. A. Negm, A. A. Farag, and E. A. Mohammed. 2021. Assessment of 3-amino-1H-1,2,4-triazole modified layered double hydroxide in effective remediation of heavy metal ions from aqueous environment. Journal of Molecular Liquids 341:116935. doi:10.1016/j.molliq.2021.116935.
  • Ansari, K. R., M. A. Quraishi, and A. Singh. 2014. Schiff’s base of pyridyl substituted triazoles as new and effective corrosion inhibitors for mild steel in hydrochloric acid solution. Corrosion Science 79:5–15. doi:10.1016/j.corsci.2013.10.009.
  • Anwer, K. E., A. A. Farag, E. A. Mohamed, E. M. Azmy, and G. H. Sayed. 2021. Corrosion inhibition performance and computational studies of pyridine and pyran derivatives for API X-65 steel in 6M H2SO4. Journal of Industrial and Engineering Chemistry 97:523–38. doi:10.1016/j.jiec.2021.03.016.
  • Assad, H., and A. Kumar. 2021. Understanding functional group effect on corrosion inhibition efficiency of selected organic compounds. Journal of Molecular Liquids 344:117755. doi:10.1016/j.molliq.2021.117755.
  • Bahlakeh, G., A. Dehghani, B. Ramezanzadeh, and M. Ramezanzadeh. 2019. Highly effective mild steel corrosion inhibition in 1 M HCl solution by novel green aqueous Mustard seed extract: Experimental, electronic-scale DFT and atomic-scale MC/MD explorations. Journal of Molecular Liquids 293:111559. doi:10.1016/j.molliq.2019.111559.
  • Bentiss, F., M. Lebrini, and M. Lagrenée. 2005. Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in mild steel/2,5-bis(n-thienyl)-1,3,4-thiadiazoles/hydrochloric acid system. Corrosion Science 47 (12):2915–31. doi:10.1016/j.corsci.2005.05.034.
  • Boucherit, L., T. Douadi, N. Chafai, M. Al-Noaimi, and S. Chafaa. 2018. The inhibition Activity of 1,10 - bis(2-formylphenyl)-1,4,7,10- tetraoxadecane (Ald) and its Schiff base (L) on the corrosion of carbon steel in hcl: experimental and theoretical studies. International Journal of Electrochemical Science 13. doi:10.20964/2018.04.59.
  • Boulechfar, C., H. Ferkous, S. Djellali, M. A. Amin, S. Boufas, A. Djedouani, A. Delimi, Y. Ben Amor, K. Kumar Yadav, B. -H. Jeon, et al. 2021. DFT/Molecular scale, MD simulation and assessment of the eco-friendly anti-corrosion performance of a novel Schiff base on XC38 carbon steel in acidic medium. Journal of Molecular Liquids 344:117874. doi:10.1016/j.molliq.2021.117874.
  • Chafiq, M., A. Chaouiki, M. R. Al-Hadeethi, R. Salghi, H. Ismat, A. Shaaban, and I. -M. Chung. 2021. A joint experimental and theoretical investigation of the corrosion inhibition behavior and mechanism of hydrazone derivatives for mild steel in HCl solution. Colloids Surfaces A Physicochem Eng Asp 610:125744. doi:10.1016/j.colsurfa.2020.125744.
  • Chauhan, D. S., M. A. J. Mazumder, M. A. Quraishi, and K. R. Ansari. 2020. Chitosan-cinnamaldehyde Schiff base: A bioinspired macromolecule as corrosion inhibitor for oil and gas industry. International Journal of Biological Macromolecules 158:127–38. doi:10.1016/j.ijbiomac.2020.04.200.
  • Chen, L., D. Lu, and Y. Zhang. 2022. Organic compounds as corrosion inhibitors for carbon steel in HCl solution: a comprehensive review. Materials (Basel) 15:2023. doi:10.3390/ma15062023.
  • Dahmani, K., M. Galai, A. Elhasnaoui, B. T. Hessni, and A. Cherkaoui. 2015. Corrosion resistance of electrochemical copper coating realized in the presence of essential oils. Der Pharma Chem 7:566–72.
  • Daoud, D., T. Douadi, S. Issaadi, and S. Chafaa. 2014. Adsorption and corrosion inhibition of new synthesized thiophene Schiff base on mild steel X52 in HCl and H2SO4 solutions. Corrosion Science 79:50–58. doi:10.1016/j.corsci.2013.10.025.
  • Daravath, S., A. Rambabu, N. Ganji, G. Ramesh, P. V. Anantha Lakshmi, and Shivaraj, S. 2022. Spectroscopic, quantum chemical calculations, antioxidant, anticancer, antimicrobial, DNA binding and photo physical properties of bioactive Cu(II) complexes obtained from trifluoromethoxy aniline Schiff bases. Journal of Molecular Structure 1249:131601. doi:10.1016/j.molstruc.2021.131601.
  • Debab, H. 2018. Electrochemical and quantum chemical studies of adsorption and corrosion inhibition of two new schiff bases on carbon steel in hydrochloric acid media. International Journal of Electrochemical Science 13:6958–77. doi:10.20964/2018.07.19.
  • Dkhirech, N., M. Galai, Y. el Kacimi, M. Rbaa, M. Ouakki, B. Lakhrissi, and M. Touhami. 2017. New Quinoline derivatives as sulfuric acid inhibitor’s for mild steel. Analytical and Bioanalytical Electrochemistry 10(1):111–135.
  • Dueke‑eze, C. U., N. A. Madueke, N. B. Iroha, N. J. Maduelosi, L. A. Nnanna, V. C. Anadebe, and A. A. Chokor. 2022. Adsorption and inhibition study of N-(5-methoxy-2-hydroxybenzylidene) isonicotinohydrazide Schiff base on copper corrosion in 3.5% NaCl. Egyptian Journal of Petroleum 31 (2):31–37. doi:10.1016/j.ejpe.2022.05.001.
  • Dutta, A., S. K. Saha, U. Adhikari, P. Banerjee, and D. Sukul. 2017. Effect of substitution on corrosion inhibition properties of 2-(substituted phenyl) benzimidazole derivatives on mild steel in 1M HCl solution: A combined experimental and theoretical approach. Corrosion Science 123:256–66. doi:10.1016/j.corsci.2017.04.017.
  • Fakhry, H., M. El Faydy, F. Benhiba, T. Laabaissi, M. Bouassiria, M. Allali, B. Lakhrissi, H. Oudda, A. Guenbour, I. Warad, et al. 2021. A newly synthesized quinoline derivative as corrosion inhibitor for mild steel in molar acid medium: Characterization (SEM/EDS), experimental and theoretical approach. Colloids Surfaces A Physicochem Eng Asp 610:125746. doi:10.1016/j.colsurfa.2020.125746.
  • Farag, A. A., H. E. Abdallah, E. A. Badr, E. A. Mohamed, A. I. Ali, and A. Y. El-Etre. 2021. The inhibition performance of morpholinium derivatives on corrosion behavior of carbon steel in the acidized formation water: Theoretical, experimental and biocidal evaluations. Journal of Molecular Liquids 341:117348. doi:10.1016/j.molliq.2021.117348.
  • Farag, A. A., and E. A. Badr. 2020. Non-ionic surfactant loaded on gel capsules to protect downhole tubes from produced water in acidizing oil wells. Corrosion Reviews 38 (2):151–64. doi:10.1515/corrrev-2019-0030.
  • Farag, A. A., A. M. Eid, M. M. Shaban, E. A. Mohamed, and G. Raju. 2021. Integrated modeling, surface, electrochemical, and biocidal investigations of novel benzothiazoles as corrosion inhibitors for shale formation well stimulation. Journal of Molecular Liquids 336:116315. doi:10.1016/j.molliq.2021.116315.
  • Farag, A. A., A. S. Ismail, and M. A. Migahed. 2020. Squid by-product gelatin polymer as an eco-friendly corrosion inhibitor for carbon steel in 0.5 M H2SO4 solution: experimental, theoretical, and monte carlo simulation studies. Journal of Bio- and Tribo-Corrosion 6 (1):6. doi:10.1007/s40735-019-0310-0.
  • Farag, A. A., E. A. Mohamed, G. H. Sayed, and K. E. Anwer. 2021. Experimental/Computational assessments of API steel in 6 M H2SO4 medium containing novel pyridine derivatives as corrosion inhibitors. Journal of Molecular Liquids 330:330. doi:10.1016/j.molliq.2021.115705.
  • Farag, A. A., E. A. Mohamed, and A. Toghan. 2022. The new trends in corrosion control using superhydrophobic surfaces: A review. Corrosion Reviews 41 (1):21–37. doi:10.1515/corrrev-2022-0020.
  • Fatima, S., R. Sharma, F. Asghar, A. Kamal, A. Badshah, and H. -B. Kraatz. 2019. Study of new amphiphiles based on ferrocene containing thioureas as efficient corrosion inhibitors: Gravimetric, electrochemical, SEM and DFT studies. Journal of Industrial and Engineering Chemistry 76:374–87. doi:10.1016/j.jiec.2019.04.003.
  • Fernandes, C. M., L. X. Alvarez, N. E. dos Santos, A. C. Maldonado Barrios, and E. A. Ponzio. 2019. Green synthesis of 1-benzyl-4-phenyl-1H-1,2,3-triazole, its application as corrosion inhibitor for mild steel in acidic medium and new approach of classical electrochemical analyses. Corrosion Science 149:185–94. doi:10.1016/j.corsci.2019.01.019.
  • Furtado, L. B., R. C. Nascimento, F. J. F. S. Henrique, M. J. O. C. Guimarães, J. C. Rocha, J. A. C. Ponciano, and P. R. Seidl. 2022. Effects of temperature, concentration and synergism on green Schiff bases synthesized from vanillin in applications as corrosion inhibitors for carbon steel in well stimulation. Ournal of Petroleum Engineering 213:110401. doi:10.1016/j.petrol.2022.110401.
  • Galai, M., M. Faydy, Y. Kacimi, K. Dahmani, and K. Alaoui. 2017. Synthesis, characterization and anti-corrosion properties of novel quinolinol on c-steel in a molar hydrochloric acid solution. Electrochimica acta 35 (4):233–51. doi:10.4152/pea.201704233.
  • Galai, M., M. Rbaa, M. Ouakki, K. Dahmani, S. Kaya, N. Arrousse, N. Dkhireche, S. Briche, B. Lakhrissi, and M. Ebn Touhami. 2021. Functionalization effect on the corrosion inhibition of novel eco-friendly compounds based on 8-hydroxyquinoline derivatives: Experimental, theoretical and surface treatment. Chemical Physics Letters 776:138700. doi:10.1016/j.cplett.2021.138700.
  • Gece, G., and S. Bilgiç. 2009. Quantum chemical study of some cyclic nitrogen compounds as corrosion inhibitors of steel in NaCl media. Corrosion Science 51 (8):1876–78. doi:10.1016/j.corsci.2009.04.003.
  • Guo, W., M. Talha, Y. Lin, and X. Kong. 2021. Schiff’s base with center of symmetry as an effective corrosion inhibitor for mild steel in acid medium: Electrochemical & simulation studies. Colloids Surfaces A Physicochem Eng Asp 615:126234. doi:10.1016/j.colsurfa.2021.126234.
  • Hamani, H., D. Daoud, S. Benabid, and T. Douadi. 2022. Electrochemical, density functional theory (DFT) and molecular dynamic (MD) simulations studies of synthesized three news Schiff bases as corrosion inhibitors on mild steel in the acidic environment. Journal of the Indian Chemical Society 99 (7):100492. doi:10.1016/j.jics.2022.100492.
  • Harb, S. V., A. Trentin, T. A. C. de Souza, M. Magnani, S. H. Pulcinelli, C. V. Santilli, and P. Hammer. 2020. Effective corrosion protection by eco-friendly self-healing PMMA-cerium oxide coatings. Chemical Engineering Journal 383:123219. doi:10.1016/j.cej.2019.123219.
  • Hashem, H. E., A. A. Farag, E. A. Mohamed, and E. M. Azmy. 2022. Experimental and theoretical assessment of benzopyran compounds as inhibitors to steel corrosion in aggressive acid solution. Journal of Molecular Structure 1249:131641. doi:10.1016/j.molstruc.2021.131641.
  • Hashem, H. E., E. A. Mohamed, A. A. Farag, N. A. Negm, and E. A. M. Azmy. 2021. New heterocyclic Schiff base-metal complex: Synthesis, characterization, density functional theory study, and antimicrobial evaluation. Applied Organometallic Chemistry 35 (9):35. doi:10.1002/aoc.6322.
  • Jafari, H., E. Ameri, M. Rezaeivala, A. Berisha, and J. Halili. 2022. Anti-corrosion behavior of two N2O4 Schiff-base ligands: Experimental and theoretical studies. The Journal of Physics and Chemistry of Solids 164:110645. doi:10.1016/j.jpcs.2022.110645.
  • Jafari, H., I. Danaee, H. Eskandari, and M. RashvandAvei. 2013. Electrochemical and Theoretical Studies of Adsorption and Corrosion Inhibition of N,N′-Bis(2-hydroxyethoxyacetophenone)-2,2-dimethyl-1,2-propanediimine on Low Carbon Steel (API 5L Grade B) in Acidic Solution. Industrial & Engineering Chemistry Research 52 (20):6617–32. doi:10.1021/ie400066x.
  • Jyothi, P., V. Sumalatha, and D. Rajitha. 2022. Cobalt (II) complexes with N-methyl thio semicarbazide Schiff bases: Synthesis, Spectroscopic investigation, Cytotoxicity, DNA binding and incision, anti-bacterial and anti-fungal studies. Inorganic Chemistry Communications 145:110029. doi:10.1016/j.inoche.2022.110029.
  • Kalkhambkar, A. G., and S. K. Rajappa. 2022. Effect of Schiff’s bases on corrosion protection of mild steel in hydrochloric acid medium: Electrochemical, quantum chemical and surface characterization studies. Journal of Advanced Chemical Engineering 12:100407. doi:10.1016/j.ceja.2022.100407.
  • Kalkhambkar, A. G., S. K. Rajappa, J. Manjanna, and G. H. Malimath. 2022. Saussurea obvallatta leaves extract as a potential eco-friendly corrosion inhibitor for mild steel in 1M HCl. Inorganic Chemistry Communications 143:109799. doi:10.1016/j.inoche.2022.109799.
  • Kilic, A., R. Söylemez, and V. Okumuş. 2022. Design, spectroscopic properties and effects of novel catechol spiroborates derived from Schiff bases in the antioxidant, antibacterial and DNA binding activity. Journal of Organometallic Chemistry 960:122228. doi:10.1016/j.jorganchem.2021.122228.
  • Liang, C., Z. Liu, Q. Liang, G. -C. Han, J. Han, S. Zhang, and X. -Z. Feng. 2019. Synthesis of 2-aminofluorene bis-Schiff base and corrosion inhibition performance for carbon steel in HCl. Journal of Molecular Liquids 277:330–40. doi:10.1016/j.molliq.2018.12.095.
  • Li, W., B. Tan, S. Zhang, L. Guo, J. Ji, M. Yan, and R. Wang. 2022. Insights into triazole derivatives as potential corrosion inhibitors in CMP process: Experimental evaluation and theoretical analysis. Applied Surface Science 602:154165. doi:10.1016/j.apsusc.2022.154165.
  • Madani, A., L. Sibous, A. Hellal, I. Kaabi, and E. Bentouhami. 2021. Synthesis, density functional theory study, molecular dynamics simulation and anti-corrosion performance of two benzidine Schiff bases. Journal of Molecular Structure 1235:130224. doi:10.1016/j.molstruc.2021.130224.
  • Madkour, L. H., S. Kaya, L. Guo, and C. Kaya. 2018. Quantum chemical calculations, molecular dynamic (MD) simulations and experimental studies of using some azo dyes as corrosion inhibitors for iron. Part 2: Bis–azo dye derivatives. Journal of Molecular Structure 1163:397–417. doi:10.1016/j.molstruc.2018.03.013.
  • Mohamed, A., E. A. Altalhi, and A. A. Negm. 2022. Fabrication of novel eco-friendly hybrid biocomposites based on carboxymethyl chitosan/polypropylene glycol @ activated carbon for the efficient removal of Cr (III) from the aquatic medium. Energy Sources, Part a Recover. Utilization and Environmental Effects 44 (2):5398–420. doi:10.1080/15567036.2022.2086947.
  • Mohamed, H. A., and A. A. Farag. 2008. Corrosion inhibition of mild steel using emulsified thiazole adduct in Different binder systems. Eurasian Chemistry 10:67–77.
  • Mohamed, E. A., H. E. Hashem, E. M. Azmy, N. A. Negm, and A. A. Farag. 2021. Synthesis, structural analysis, and inhibition approach of novel eco-friendly chalcone derivatives on API X65 steel corrosion in acidic media assessment with DFT & MD studies. Environmental Technology and Innovation 24:24. doi:10.1016/j.eti.2021.101966.
  • Murmu, M., S. Saha, N. Murmu, and P. Banerjee. 2018. Effect of stereochemical conformation into the corrosion inhibitive behaviour of double azomethine based Schiff bases on mild steel surface in 1 mol L−1 HCl medium: An experimental, density functional theory and molecular dynamics simulation study. Corrosion Science 146:146. doi:10.1016/j.corsci.2018.10.002.
  • Murmu, M., S. K. Saha, N. C. Murmu, and P. Banerjee. 2019. Amine cured double Schiff base epoxy as efficient anticorrosive coating materials for protection of mild steel in 3.5%. Journal of Molecular Liquids 278:521–35. doi:10.1016/j.molliq.2019.01.066.
  • Natash Mary, R., R. Nazareth, P. A. Suchetan, and K. Potla. 2022. Schiff bases derived from triazoles as corrosion inhibitors for maraging steel in acid mixtures: experimental and theoretical studies. Polycyclic Aromatic Compounds 1–22. doi:10.1080/10406638.2022.2055582.
  • Negm, N. A., A. A. Altalhi, N. E. Saleh Mohamed, M. T. H. A. Kana, and E. A. Mohamed. 2022. Growth inhibition of sulfate-reducing bacteria during gas and oil production using novel schiff base diquaternary biocides: synthesis, antimicrobial, and toxicological assessment. ACS Omega 7 (44):40098–108. doi:10.1021/acsomega.2c04836.
  • Negm, N. A., A. F. El Farargy, I. A. Mohammad, M. F. Zaki, and M. M. Khowdiary. 2013. Retracted synthesis and inhibitory activity of schiff base surfactants derived from tannic acid and their cobalt (II), Manganese (II) and Iron (III) Complexes Against Bacteria and Fungi. Journal of Surfactants and Detergents 16 (5):767–77. doi:10.1007/s11743-013-1437-5.
  • Negm, N. A., A. F. El-Farrargy, and I. A. Mohammad. 2012. Synthesis and inhibitory activity of schiff base surfactants derived from tannic acid against bacteria and fungi. Egyptian Journal of Chemistry 55:367–79. doi:10.21608/EJCHEM.2012.1163.
  • Olasunkanmi, L. O., A. O. Idris, A. H. Adewole, O. O. Wahab, and E. E. Ebenso. 2020. Adsorption and corrosion inhibition potentials of salicylaldehyde-based schiff bases of semicarbazide and p-toluidine on mild steel in acidic medium: experimental and computational studies. Surfaces and Interfaces 21:100782. doi:10.1016/j.surfin.2020.100782.
  • Ouakki, M., M. Galai, Z. Aribou, Z. Benzekri, E. H. E. Assiri, K. Dahmani, E. Ech-Chihbi, A. S. Abousalem, S. Boukhris, and M. Cherkaoui. 2022. Detailed experimental and computational explorations of pyran derivatives as corrosion inhibitors for mild steel in 1.0 M HCl: Electrochemical/surface studies, DFT modeling, and MC simulation. Journal of Molecular Structure 1261:132784. doi:10.1016/j.molstruc.2022.132784.
  • Ouakki, M., M. Galai, Z. Benzekri, Z. Aribou, E. Ech-Chihbi, L. Guo, K. Dahmani, K. Nouneh, S. Briche, S. Boukhris, et al. 2021. A detailed investigation on the corrosion inhibition effect of by newly synthesized pyran derivative on mild steel in 1.0 M HCl: Experimental, surface morphological (SEM-EDS, DRX& AFM) and computational analysis (DFT & MD simulation). Journal of Molecular Liquids 344:117777. doi:10.1016/j.molliq.2021.117777.
  • Ouass, A., M. Galai, M. Ouakki, E. Ech-Chihbi, L. Kadiri, R. Hsissou, Y. Essaadaoui, A. Berisha, M. Cherkaoui, A. Lebkiri, et al. 2021. Poly(sodium acrylate) and Poly(acrylic acid sodium) as an eco-friendly corrosion inhibitor of mild steel in normal hydrochloric acid: Experimental, spectroscopic and theoretical approach. Journal of Applied Electrochemistry 51 (7):1009–32. doi:10.1007/s10800-021-01556-y.
  • Prasad, A. R., K. O. Shamsheera, and A. Joseph. 2021. Electrochemical and surface characterization of mild steel with corrosion resistant zirconia network fabricated by aqueous sol-gel technique. Journal of the Indian Chemical Society 98 (4):100052. doi:10.1016/j.jics.2021.100052.
  • Rbaa, M., F. Benhiba, P. Dohare, L. Lakhrissi, R. Touir, B. Lakhrissi, A. Zarrouk, and Y. Lakhrissi. 2020. Synthesis of new epoxy glucose derivatives as a non-toxic corrosion inhibitors for carbon steel in molar HCl: Experimental, DFT and MD simulation. Chemical Data Collections 27:100394. doi:10.1016/j.cdc.2020.100394.
  • Rbaa, M., F. Benhiba, I. B. Obot, H. Oudda, I. Warad, B. Lakhrissi, and A. Zarrouk. 2019. Two new 8-hydroxyquinoline derivatives as an efficient corrosion inhibitors for mild steel in hydrochloric acid: Synthesis, electrochemical, surface morphological, UV–visible and theoretical studies. Journal of Molecular Liquids 276:120–33. doi:10.1016/j.molliq.2018.11.104.
  • Saranya, J., F. Benhiba, N. Anusuya, R. Subbiah, A. Zarrouk, and S. Chitra. 2020. Experimental and computational approaches on the pyran derivatives for acid corrosion. Colloids Surfaces A Physicochem Eng Asp 603:125231. doi:10.1016/j.colsurfa.2020.125231.
  • Sengupta, S., M. Murmu, S. Mandal, H. Hirani, and P. Banerjee. 2021. Competitive corrosion inhibition performance of alkyl/acyl substituted 2-(2-hydroxybenzylideneamino)phenol protecting mild steel used in adverse acidic medium: A dual approach analysis using FMOs/molecular dynamics simulation corroborated experimental fin. Colloids Surfaces A Physicochem Eng Asp 617:126314. doi:10.1016/j.colsurfa.2021.126314.
  • Shaban, S. M., E. A. Badr, M. A. Shenashen, and A. A. Farag. 2021. Fabrication and characterization of encapsulated Gemini cationic surfactant as anticorrosion material for carbon steel protection in down-hole pipelines. Environmental Technology and Innovation 23:101603. doi:10.1016/j.eti.2021.101603.
  • Shaban, M. M., N. A. Negm, R. K. Farag, A. A. Fadda, A. E. Gomaa, A. A. Farag, and M. A. Migahed. 2022. Anti-corrosion, antiscalant and anti-microbial performance of some synthesized trimeric cationic imidazolium salts in oilfield applications. Journal of Molecular Liquids 351:118610. doi:10.1016/j.molliq.2022.118610.
  • Shenoy, K., V. Venugopal, P. P. Reena Kumari, and P. D. Chakraborty. 2022. Anti-corrosion investigation of a new nitro veratraldehyde substituted imidazopyridine derivative Schiff base on mild steel surface in hydrochloric acid medium: Experimental, computational, surface morphological analysis. Materials Chemistry and Physics 281:125855. doi:10.1016/j.matchemphys.2022.125855.
  • Silori, Y., and A. K. De. 2020. Erratum to “Controlling balance between homo-FRET and hetero-FRET within hetero-chromophoric systems by tuning nature of solvent” [J. Mol. Liq. 298 (2020) 1–8/112093]. Journal of Molecular Liquids 303:112673. doi:10.1016/j.molliq.2020.112673.
  • Sliem, M., A. Abdullah, M. Sharaf, E. G. Zaki, and N. M. Basiony. 2020. Corrosion inhibition of mild steel in sulfuric acid by newly synthesized schiff base: an electrochemical, mott‐schottky, DFT and monte carlo simulation study. Electroanalysis 32 (12):32. doi:10.1002/elan.202060461.
  • Sukul, D., A. Pal, S. Mukhopadhyay, S. K. Saha, and P. Banerjee. 2018. Electrochemical behaviour of uncoated and phosphatidylcholine coated copper in hydrochloric acid medium. Journal of Molecular Liquids 249:930–40. doi:10.1016/j.molliq.2017.11.129.
  • Swathi, N. P., S. Samshuddin, A. H. Alamri, K. Rasheeda, V. D. P. Alva, and T. A. Aljohani. 2022. Experimental and theoretical investigation of a new triazole derivative for the corrosion inhibition of carbon steel in acid medium. Egyptian Journal of Petroleum 31 (2):15–21. doi:10.1016/j.ejpe.2022.04.002.
  • Uğuz, Ö., M. GÜMÜŞ, Y. Sert, İ. Koca, and A. Koca. 2022. Utilization of pyrazole-perimidine hybrids bearing different substituents as corrosion inhibitors for 304 stainless steel in acidic media. Journal of Molecular Structure 1262:133025. doi:10.1016/j.molstruc.2022.133025.
  • Wazzan, N. A., I. B. Obot, and S. Kaya. 2016. Theoretical modeling and molecular level insights into the corrosion inhibition activity of 2-amino-1,3,4-thiadiazole and its 5-alkyl derivatives. Journal of Molecular Liquids 221:579–602. doi:10.1016/j.molliq.2016.06.011.
  • Yadav, M., S. Kumar, T. Purkait, L. O. Olasunkanmi, I. Bahadur, and E. E. Ebenso. 2016. Electrochemical, thermodynamic and quantum chemical studies of synthesized benzimidazole derivatives as corrosion inhibitors for N80 steel in hydrochloric acid. Journal of Molecular Liquids 213:122–38. doi:10.1016/j.molliq.2015.11.018.
  • Yadav, M., S. Kumar, N. Tiwari, I. Bahadur, and E. E. Ebenso. 2015. Experimental and quantum chemical studies of synthesized triazine derivatives as an efficient corrosion inhibitor for N80 steel in acidic medium. Journal of Molecular Liquids 212:151–67. doi:10.1016/j.molliq.2015.09.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.