213
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Comparative study of V-ribs miniature with dimple hybrid roughness along with dimples shaped roughness used in solar air heating system

&
Pages 3297-3317 | Received 25 Aug 2022, Accepted 22 Mar 2023, Published online: 30 Mar 2023

References

  • ASHRAE Standard. 1977. Method of testing to determine the thermal performance of solar collectors, Vols. 93-77. New York: American Society of Heating, Refrigeration and Air-Conditioning Engineers.
  • Azadani, L. N., and N. Gharouni. 2021. Multi objective optimization of cylindrical shape roughness parameters in a solar air heater. Renewable Energy 179:1156–68. doi:10.1016/j.renene.2021.07.084.
  • Bezbaruah, P. J., R. S. Das, and B. K. Sarkar. 2021. Experimental and numerical analysis of solar air heater accoutered with modified conical vortex generators in a staggered fashion. Renewable Energy 180:109–31. doi:10.1016/j.renene.2021.08.046.
  • Burgess, N. K., and P. M. Ligrani. 2005. Effects of dimple depth on channel Nusselt numbers and friction factors. doi:10.1115/1.1994880.
  • Gill, R. S., V. S. Hans, J. S. Saini, and S. Singh. 2017. Investigation on performance enhancement due to staggered piece in a broken arc rib roughened solar air heater duct. Renewable Energy 104:148–62. doi:10.1016/j.renene.2016.12.002.
  • Goel, V., P. Guleria, and R. Kumar. 2017. Effect of apex angle variation on thermal and hydraulic performance of roughened triangular duct. International Communications in Heat and Mass Transfer 86:239–44. doi:10.1016/j.icheatmasstransfer.2017.06.008.
  • Haldar, A., L. Varshney, and P. Verma. 2022. Effect of roughness parameters on performance of solar air heater having artificial wavy roughness using CFD. Renewable Energy 184:266–79. doi:10.1016/j.renene.2021.11.088.
  • Hwang, S. D., H. G. Kwon, and H. H. Cho. 2008. Heat transfer with dimple/protrusion arrays in a rectangular duct with a low Reynolds number range. International Journal of Heat and Fluid ?ow 29 (4):916–26. doi:10.1016/j.ijheatfluidflow.2008.01.004.
  • Jin, D., S. Quan, J. Zuo, and S. Xu. 2019. Numerical investigation of heat transfer enhancement in a solar air heater roughened by multiple V-shaped ribs. Renewable Energy 134:78–88. doi:10.1016/j.renene.2018.11.016.
  • Jin, D., J. Zuo, S. Quan, S. Xu, and H. Gao. 2017. Thermohydraulic performance of solar air heater with staggered multiple V-shaped ribs on the absorber plate. Energy 127:68–77. doi:10.1016/j.energy.2017.03.101.
  • Kalogirou, S. A. 2013. Solar energy engineering: Processes and systems, 2nd. United States of America: Academic Press.
  • Karwa, R., R. D. Bairwa, B. P. Jain, and N. Karwa. 2005. Experimental study of the effects of rib angle and discretization on heat transfer and friction in an asymmetrically heated rectangular duct. Journal of Enhanced Heat Transfer 12 (4):343–55. i4.40. doi:10.1615/JEnhHeatTransf.v12.
  • Kore, S. S., S. V. Joshi, and N. K. Sane. 2011. Experimental investigations of heat transfer enhancement from dimpled surface in a channel. International Journal of Engineering Science and Technology 3 (8):6227–34.
  • Kumar, R., and V. Goel. 2021. Unconventional solar air heater with triangular flow-passage: A CFD based comparative performance assessment of different cross-sectional rib-roughness. Renewable Energy 172:1267–78. doi:10.1016/j.renene.2021.03.068.
  • Kumar, R., A. Kumar, and V. Goel. 2018. Effect of rounded corners on heat transfer and fluid flow through triangular duct. Journal of Heat Transfer 140 (12). doi:10.1115/1.4040957.
  • Kumar, A., A. P. Singh, and O. P. Singh. 2022. Performance characteristics of a new curved double-pass counter flow solar air heater. Energy 239:121886. doi:10.1016/j.energy.2021.121886.
  • Liu, J., Y. Song, G. Xie, and B. Sunden. 2015. Numerical modeling flow and heat transfer in dimpled cooling channels with secondary hemispherical protrusions. Energy 79:1–19. doi:10.1016/j.energy.2014.05.075.
  • Mahmood, G. I., and P. M. Ligrani. 2002. Heat transfer in a dimpled channel: Combined influences of aspect ratio, temperature ratio, Reynolds number, and flow structure. International Journal of Heat and Mass Transfer 45 (10):2011–20. doi:10.1016/S0017-9310(01)00314-3.
  • Maithani, R., and J. S. Saini. 2016. Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with V-ribs with symmetrical gaps. Experimental Thermal and Fluid Science 70:220–27. doi:10.1016/j.expthermflusci.2015.09.010.
  • Murmu, R., P. Kumar, and H. N. Singh. 2022. Effects of roughness parameters on the heat transfer and friction of an inclined spherical ball roughened flat plate solar collector. International Journal of Ambient Energy 43 (1):1288–303. doi:10.1080/01430750.2019.1693426.
  • Nanjundappa, M. 2020. Optimum thermo-hydraulic performance of solar air heater provided with cubical roughness on the absorber surface. Experimental Heat Transfer 33 (4):374–87. doi:10.1080/08916152.2019.1652214.
  • Nazir, M. S., A. Shahsavar, M. Afrand, M. Arıcı, S. Nižetić, Z. Ma, and H. F. Öztop. 2021. A comprehensive review of parabolic trough solar collectors equipped with turbulators and numerical evaluation of hydrothermal performance of a novel model. Sustainable Energy Technologies and Assessments 45:101103. doi:10.1016/j.seta.2021.101103.
  • Ran, S., P. Zhang, and Y. Rao. 2022. Numerical study of heat transfer and flow structure over channel surfaces featuring miniature V rib-dimples with various configurations. International Journal of Thermal Sciences 172:107342. doi:10.1016/j.ijthermalsci.2021.107342.
  • Rao, Y., and P. Zhang. 2020. Experimental study of heat transfer and pressure loss in channels with miniature v rib-dimple hybrid structure. Heat Transfer Engineering 41 (15–16):1431–41. doi:10.1080/01457632.2019.1628502.
  • Saini, R. P., and J. Verma. 2008. Heat transfer and friction factor correlations for a duct having dimple-shape artificial roughness for solar air heaters. Energy 33 (8):1277–87. doi:10.1016/j.energy.2008.02.017.
  • Sethi, M., Varun, and N. S. Thakur. 2012. Correlations for solar air heater duct with dimpled shape roughness elements on absorber plate. Solar Energy 86 (9):2852–61. doi:10.1016/j.solener.2012.06.024.
  • Singh, I., S. Vardhan, S. Singh, and A. Singh. 2019. Experimental and CFD analysis of solar air heater duct roughened with multiple broken transverse ribs: A comparative study. Solar Energy 188:519–32. doi:10.1016/j.solener.2019.06.022.
  • Thakur, D. S., M. K. Khan, and M. Pathak. 2017. Solar air heater with hyperbolic ribs: 3D simulation with experimental validation. Renewable Energy 113:357–68. doi:10.1016/j.renene.2017.05.096.
  • Thakur, S., and N. S. Thakur. 2020. Impact of multi-staggered rib parameters of the ‘W’shaped roughness on the performance of a solar air heater channel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–20. doi:10.1080/15567036.2020.1764672.
  • Webb, R., and E. Eckert. 1972. Application of rough surfaces to heat exchanger design. International Journal of Heat and Mass Transfer 15(9):1647–1658. doi:10.1016/0017-9310(72)90095-6.
  • Xie, G., J. Liu, P. M. Ligrani, and W. Zhang. 2013. Numerical analysis of flow structure and heat transfer characteristics in square channels with different internal-protruded dimple geometrics. International Journal of Heat and Mass Transfer 67:81–97. doi:10.1016/j.ijheatmasstransfer.2013.07.094.
  • Yadav, S., M. Kaushal, Varun, and Siddhartha. 2013. Nusselt number and friction factor correlations for solar air heater duct having protrusions as roughness elements on absorber plate. Experimental Thermal and Fluid Science 44:34–41. doi:10.1016/j.expthermflusci.2012.05.011. thermflusci .2012. 05.011.
  • Zhang, P., Y. Rao, Y. Li, and B. Weigand. 2019. Heat transfer and turbulent flow structure in channels with miniature V-Shaped rib-dimple hybrid structures on one wall. Journal of Heat Transfer 141 (7):071903. doi:10.1115/1.4043675.
  • Zhao, Z., L. Luo, D. Qiu, Z. Wang, and B. Sundén. 2021. On the solar air heater thermal enhancement and flow topology using differently shaped ribs combined with delta-winglet vortex generators. Energy 224:119944. doi:10.1016/j.energy.2021.119944.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.