137
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Numerical investigation on thermal performance enhancement of flat plate solar collector with titania-silver/water hybrid nanofluid

ORCID Icon &
Pages 3654-3680 | Received 23 Nov 2022, Accepted 06 Mar 2023, Published online: 12 Apr 2023

References

  • Acaroğlu, H., and M. C. Baykul. 2018. Economic guideline about financial utilization of flat-plate solar collectors (FPSCs) for the consumer segment in the city of Eskisehir. Renewable and Sustainable Energy Reviews 81:2045–58. doi:10.1016/j.rser.2017.05.291.
  • Aghakhani, S., M. Afrand, A. Karimipour, R. Kalbasi, and M. Mehdi Razzaghi. 2022. Numerical and experimental study of thermal efficiency of a spiral flat plate solar collector by changing the spiral diameter, flow rate, and pipe diameter. Sustainable Energy Technologies and Assessments 53:102353. doi:10.1016/j.seta.2022.102353.
  • Akbari, M., A. Behzadmehr, and F. Shahraki. 2008. Fully developed mixed convection in horizontal and inclined tubes with uniform heat flux using nanofluid. International Journal of Heat and Fluid Flow 29:545–56. doi:10.1016/j.ijheatfluidflow.2007.11.006.
  • Alim, M. A., Z. Abdin, R. Saidur, A. Hepbasli, M. A. Khairul, and N. A. Rahim. 2013. Analyses of entropy generation and pressure drop for a conventional flat plate solar collector using different types of metal oxide nanofluids. Energy and Buildings 66:289–96. doi:10.1016/j.enbuild.2013.07.027.
  • Alkhafaji, M. H., B. Freegah, and M. H. Alhamdo. 2022. Study the influence of adding fins to the plate of the solar collector on thermal performance under natural phenomena. International Communications in Heat and Mass Transfer 135:106058. doi:10.1016/j.icheatmasstransfer.2022.106058.
  • Alklaibi, A. M., L. S. Sundar, and A. C. M. Sousa. 2021. Experimental analysis of exergy efficiency and entropy generation of diamond/water nanofluids flow in a thermosyphon flat plate solar collector. International Communications in Heat and Mass Transfer 120:105057. doi:10.1016/j.icheatmasstransfer.2020.105057.
  • Al-Yasiri, Q., M. Szabó, and M. Arıcı. 2021. Single and hybrid nanofluids to enhance performance of flat plate solar collectors: application and obstacles. Periodica Polytechnica Mechanical Engineering 65 (1):86–102. doi:10.3311/PPme.17312.
  • Ansarpour, M., N. Aslfattahi, M. Mofarahi, and R. Saidur. 2022. Numerical study on the convective heat transfer performance of a developed MXene IoNanofluid in a horizontal tube by considering temperature-dependent properties. Journal of Thermal Analysis and Calorimetry 147 (21):12067–78. doi:10.1007/s10973-022-11414-4.
  • Anto Joseph Deeyoko, L., K. Balaji, S. Iniyan, and C. Sharmeela. 2019. Exergy, economics and pumping power analyses of flat plate solar water heater using thermal performance enhancer in absorber tube. Applied Thermal Engineering 154:726–37. doi:10.1016/j.applthermaleng.2019.03.135.
  • Ayaz Akbar, M., H. Muhammad Awais, M. Mubashir Naveed, H. Abdul Saboor, and D. Tareq Manzoor. 2020. Numerical investigation of the performance of solar collectors. International Journal of Mechanical Engineering and Applications 8 (6):139. doi:10.11648/j.ijmea.20200806.13.
  • Bakhtiari, R., B. Kamkari, M. Afrand, and A. Abdollahi. 2021. Preparation of stable TiO2-Graphene/Water hybrid nanofluids and development of a new correlation for thermal conductivity. Powder Technology 385:466–77. doi:10.1016/j.powtec.2021.03.010.
  • Belkassmi, Y., K. Gueraoui, L. El Maimouni, N. Hassanain, and O. Tata. 2020. Numerical investigation and optimization of a flat plate solar collector operating with Cu/CuO/Al2O3–Water nanofluids. Transactions of Tianjin University 27 (1):64–76. doi:10.1007/s12209-020-00272-6.
  • Bezaatpour, M., and H. Rostamzadeh. 2021. Simultaneous energy storage enhancement and pressure drop reduction in flat plate solar collectors using rotary pipes with nanofluid. Energy and Buildings 239:110855. doi:10.1016/j.enbuild.2021.110855.
  • Bianco, V., F. Chiacchio, O. Manca, and S. Nardini. 2009. Numerical investigation of nanofluids forced convection in circular tubes. Applied Thermal Engineering 29:3632–42. doi:10.1016/j.applthermaleng.2009.06.019.
  • Cerón, J. F., J. Pérez-García, J. P. Solano, A. García, and R. Herrero-Martín. 2015. A coupled numerical model for tube-on-sheet flat-plate solar liquid collectors. Analysis and validation of the heat transfer mechanisms. Applied Energy 140:275–87. doi:10.1016/j.apenergy.2014.11.069.
  • Devendiran, D. K., and V. A. Amirtham. 2016. A review on preparation, characterization, properties and applications of nanofluids. Renewable and Sustainable Energy Reviews 60:21–40. doi:10.1016/j.rser.2016.01.055.
  • Dhinesh Kumar, D., and A. Valan Arasu. 2020. Experimental investigation on dimensionless numbers and heat transfer in nanocomposite fluid shell and tube heat exchanger. Journal of Thermal Analysis and Calorimetry 143 (2):1537–53. doi:10.1007/s10973-020-09579-x.
  • Elshazly, E., A. A. Abdel-Rehim, and I. El-Mahallawi. 2022. 4E study of experimental thermal performance enhancement of flat plate solar collectors using MWCNT, Al2O3, and hybrid MWCNT/Al2O3 nanofluids. Results in Engineering 16. doi:10.1016/j.rineng.2022.100723.
  • Farajzadeh, E., S. Movahed, and R. Hosseini. 2018. Experimental and numerical investigations on the effect of Al2O3/TiO2H2O nanofluids on thermal efficiency of the flat plate solar collector. Renewable Energy 118:122–30. doi:10.1016/j.renene.2017.10.102.
  • Fattahi, A. 2021. Numerical simulation of a solar collector equipped with a twisted tape and containing a hybrid nanofluid. Sustainable Energy Technologies and Assessments 45. doi:10.1016/j.seta.2021.101200.
  • Fuxi, S., N. Sina, S. M. Sajadi, M. Z. Mahmoud, A. Abdelrahman, and A. HŞ. 2022. Artificial neural network modeling to examine spring turbulators influence on parabolic solar collector effectiveness with hybrid nanofluids. Engineering Analysis with Boundary Elements 143:442–56. doi:10.1016/j.enganabound.2022.06.026.
  • Gao, Y., J. An, Y. Xi, Z. Yang, J. Liu, A. S. Mujumdar, L. Wang, and A. P. Sasmito. 2020. Thermal conductivity and stability of novel aqueous graphene oxide–Al2O3 hybrid nanofluids for cold energy storage. Applied Sciences 10 (17):5768. doi:10.3390/app10175768.
  • Gunjo, D. G., P. Mahanta, and P. S. Robi. 2017. CFD and experimental investigation of flat plate solar water heating system under steady state condition. Renewable Energy 106:24–36. doi:10.1016/j.renene.2016.12.041.
  • Guzei, D. V., A. V. Minakov, and V. Y. Rudyak. 2019. On efficiency of convective heat transfer of nanofluids in laminar flow regime. International Journal of Heat and Mass Transfer 139:180–92. doi:10.1016/j.ijheatmasstransfer.2019.05.016.
  • Hawwash, A. A., A. K. Abdel Rahman, S. A. Nada, and S. Ookawara. 2018. Numerical investigation and experimental verification of performance enhancement of flat plate solar collector using nanofluids. Applied Thermal Engineering 130:363–74. doi:10.1016/j.applthermaleng.2017.11.027.
  • Ho, C. J., C. Y. Chang, W. -M. Yan, and P. Amani. 2018. A combined numerical and experimental study on the forced convection of Al2O3-water nanofluid in a circular tube. International Journal of Heat and Mass Transfer 120:66–75. doi:10.1016/j.ijheatmasstransfer.2017.12.031.
  • Jahangiri Mamouri, S., and A. Bénard. 2018. New design approach and implementation of solar water heaters: A case study in Michigan. Solar Energy 162:165–77. doi:10.1016/j.solener.2018.01.028.
  • Jaisankar, S., T. K. Radhakrishnan, and K. N. Sheeba. 2009. Experimental studies on heat transfer and friction factor characteristics of thermosyphon solar water heater system fitted with spacer at the trailing edge of twisted tapes. Applied Thermal Engineering 29:1224–31. doi:10.1016/j.applthermaleng.2008.06.009.
  • Ji, W., L. Yang, Z. Chen, M. Mao, and H. J-N. 2021. Experimental studies and ANN predictions on the thermal properties of TiO2-Ag hybrid nanofluids: Consideration of temperature, particle loading, ultrasonication and storage time. Powder Technology 388:212–32. doi:10.1016/j.powtec.2021.04.069.
  • Karaaslan, I., and T. Menlik. 2021. Numerical study of a photovoltaic thermal (PV/T) system using mono and hybrid nanofluid. Solar Energy 224:1260–70. doi:10.1016/j.solener.2021.06.072.
  • Khosravi, R., S. Rabiei, M. Khaki, M. R. Safaei, and M. Goodarzi. 2021. Entropy generation of graphene–platinum hybrid nanofluid flow through a wavy cylindrical microchannel solar receiver by using neural networks. Journal of Thermal Analysis and Calorimetry 145:1949–67. doi:10.1007/s10973-021-10828-w.
  • Koçak Soylu, S., Z. Yeşil Acar, M. Asiltürk, and A. İ. 2022. Effects of doping on the thermophysical properties of Ag and Cu doped TiO2 nanoparticles and their nanofluids. Journal of Molecular Liquids 368:120615. doi:10.1016/j.molliq.2022.120615.
  • Kurnia, J. C., B. A. Chaedir, and A. P. Sasmito. 2020. Laminar convective heat transfer in helical tube with twisted tape insert. International Journal of Heat and Mass Transfer 150 150:119309. doi:10.1016/j.ijheatmasstransfer.2020.119309.
  • Kylili, A., P. A. Fokaides, A. Ioannides, and S. Kalogirou. 2018. Environmental assessment of solar thermal systems for the industrial sector. Journal of Cleaner Production 176:99–109. doi:10.1016/j.jclepro.2017.12.150.
  • Minea, A. A. 2017. Hybrid nanofluids based on Al2O3, TiO2 and SiO2: Numerical evaluation of different approaches. International Journal of Heat and Mass Transfer 104:852–60. doi:10.1016/j.ijheatmasstransfer.2016.09.012.
  • Minea, A. A., B. Buonomo, J. Burggraf, D. Ercole, K. R. Karpaiya, A. Di Pasqua, G. Sekrani, J. Steffens, J. Tibaut, N. Wichmann, et al. 2019. NanoRound: A benchmark study on the numerical approach in nanofluids’ simulation. International Communications in Heat and Mass Transfer 108:104292. doi:https://doi.org/10.1016/j.icheatmasstransfer.2019.104292.
  • Muhammad, M. J., I. A. Muhammad, N. A. Che Sidik, and M. Yazid Mnaw. 2016. Thermal performance enhancement of flat-plate and evacuated tube solar collectors using nanofluid: A review. International Communications in Heat and Mass Transfer 76:6–15. doi:10.1016/j.icheatmasstransfer.2016.05.009.
  • Nabi, H., M. Pourfallah, M. Gholinia, and O. Jahanian. 2022. Increasing heat transfer in flat plate solar collectors using various forms of turbulence-inducing elements and CNTs-CuO hybrid nanofluids. Case Studies in Thermal Engineering 33:101909. doi:10.1016/j.csite.2022.101909.
  • Nuim Labib, M., M. J. Nine, H. Afrianto, H. Chung, and H. Jeong. 2013. Numerical investigation on effect of base fluids and hybrid nanofluid in forced convective heat transfer. International Journal of Thermal Sciences 71:163–71. doi:10.1016/j.ijthermalsci.2013.04.003.
  • Onyiriuka, E. J., A. I. Obanor, M. Mahdavi, and D. R. E. Ewim. 2018. Evaluation of single-phase, discrete, mixture and combined model of discrete and mixture phases in predicting nanofluid heat transfer characteristics for laminar and turbulent flow regimes. Advanced Powder Technology 29:2644–57. doi:10.1016/j.apt.2018.07.013.
  • Pátek, J., J. Hrubý, J. Klomfar, M. Součková, and A. H. Harvey. 2009. Reference correlations for thermophysical properties of liquid water at 0.1mpa. Journal of Physical and Chemical Reference Data 38:21–29. doi:10.1063/1.3043575.
  • Pathak, P. K., P. Chandra, and G. Raj. 2020. Experimental and CFD analyses of corrugated-plate solar collector by force convection. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 42:304–18. doi:10.1080/15567036.2019.1587076.
  • Purohit, N., V. A. Purohit, and K. Purohit. 2016. Assessment of nanofluids for laminar convective heat transfer: A numerical study. Engineering Science and Technology, an International Journal 19:574–86. doi:10.1016/j.jestch.2015.08.010.
  • Sarkar, J., P. Ghosh, and A. Adil. 2015. A review on hybrid nanofluids: Recent research, development and applications. Renewable and Sustainable Energy Reviews 43:164–77. doi:10.1016/j.rser.2014.11.023.
  • Shah, T. R., and H. M. Ali. 2019. Applications of hybrid nanofluids in solar energy, practical limitations and challenges: A critical review. Solar Energy 183:173–203. doi:10.1016/j.solener.2019.03.012.
  • Shahsavar, A., A. H. A. Alwaeli, N. Azimi, S. Rostami, K. Sopian, M. Arıcı, P. Estellé, S. Nižetić, A. Kasaeian, H. M. Ali, et al. 2022. Exergy studies in water-based and nanofluid-based photovoltaic/thermal collectors: Status and prospects. Renewable and Sustainable Energy Reviews 168:112740. doi:10.1016/j.rser.2022.112740.
  • Shahsavar, A., P. Jha, M. Arıcı, S. Nižetić, and Z. Ma. 2021. Energetic and exergetic performances of a nanofluid-based photovoltaic/thermal system equipped with a sheet-and-grooved serpentine tube collector: Indoor experimental tests. Solar Energy 225:918–33. doi:10.1016/j.solener.2021.08.005.
  • Sharafeldin, M. A., and G. Gróf. 2019. Efficiency of evacuated tube solar collector using WO3/Water nanofluid. Renewable Energy 134:453–60. doi:10.1016/j.renene.2018.11.010.
  • Shojaeizadeh, E., and F. Veysi. 2016. Development of a correlation for parameter controlling using exergy efficiency optimization of an Al2O3/water nanofluid based flat-plate solar collector. Applied Thermal Engineering 98:1116–29. doi:10.1016/j.applthermaleng.2016.01.001.
  • Shojaeizadeh, E., F. Veysi, and A. Kamandi. 2015. Exergy efficiency investigation and optimization of an Al2O3–water nanofluid based Flat-plate solar collector. Energy and Buildings 101:12–23. doi:10.1016/j.enbuild.2015.04.048.
  • Siavashi, M., H. R. Talesh Bahrami, and E. Aminian. 2018. Optimization of heat transfer enhancement and pumping power of a heat exchanger tube using nanofluid with gradient and multi-layered porous foams. Applied Thermal Engineering 138:465–74. doi:10.1016/j.applthermaleng.2018.04.066.
  • Stalin, P. M. J., T. V. Arjunan, M. Almeshaal, P. Murugesan, B. Prabu, and P. M. Kumar. 2022. Utilization of zinc-ferrite/water hybrid nanofluids on thermal performance of a flat plate solar collector—a thermal modeling approach. Environmental Science and Pollution Research 29 (52):78848–61. doi:10.1007/s11356-022-21261-3.
  • Sundar, L. S., E. V. Ramana, Z. Said, V. Punnaiah, K. V. V. Chandra Mouli, and A. C. M. Sousa. 2020. Properties, heat transfer, energy efficiency and environmental emissions analysis of flat plate solar collector using nanodiamond nanofluids. Diamond and Related Materials 110:110. doi:10.1016/j.diamond.2020.108115.
  • Tong, Y., H. Lee, W. Kang, and H. Cho. 2019. Energy and exergy comparison of a flat-plate solar collector using water, Al2O3 nanofluid, and CuO nanofluid. Applied Thermal Engineering 159:113959. doi:10.1016/j.applthermaleng.2019.113959.
  • Valan Arasu, A., D. Dhinesh Kumar, and I. A. Khan. 2021. Experimental validation of enhancement in thermal conductivity of titania/water nanofluid by the addition of silver nanoparticles. International Communications in Heat and Mass Transfer 120:104910. doi:10.1016/j.icheatmasstransfer.2020.104910.
  • Vengadesan, E., and R. Senthil. 2022. Experimental performance enhancement of a flat plate solar collector using straight and twisted flow inserts. Environmental Science and Pollution Research 29 (42):64232–43. doi:10.1007/s11356-022-22223-5.
  • Wang, N., S. Zeng, M. Zhou, and S. Wang. 2015. Numerical study of flat plate solar collector with novel heat collecting components. International Communications in Heat and Mass Transfer 69:18–22. doi:10.1016/j.icheatmasstransfer.2015.10.012.
  • Wen, D., and Y. Ding. 2004. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International Journal of Heat and Mass Transfer 47:5181–88. doi:10.1016/j.ijheatmasstransfer.2004.07.012.
  • Wole-Osho, I., E. C. Okonkwo, D. Kavaz, and S. Abbasoglu. 2021. Energy, exergy, and economic investigation of the effect of nanoparticle mixture ratios on the thermal performance of flat plate collectors using al2o3–zno hybrid nanofluid. Journal of Energy Engineering 147 (1):04020083. doi:10.1061/(Asce)Ey.1943-7897.0000733.
  • Yalçın, G., S. Öztuna, A. S. Dalkılıç, and S. Wongwises. 2022. Measurement of thermal conductivity and viscosity of ZnO–SiO2 hybrid nanofluids. Journal of Thermal Analysis and Calorimetry 147:8243–59. doi:10.1007/s10973-021-11076-8.
  • Yang, L., W. Ji, M. Mao, and H. J-N. 2020. An updated review on the properties, fabrication and application of hybrid-nanofluids along with their environmental effects. Journal of Cleaner Production 257:120408. doi:10.1016/j.jclepro.2020.120408.
  • Yang, L., F. Zhou, W. Ji, M. Mao, J. Huang, and X. Ma. 2022. An experimental study on the air refinement and heat recovery of hybrid TiO2-Ag nanofluids. Journal of Thermal Analysis and Calorimetry 147 (21):12047–65. doi:10.1007/s10973-022-11403-7.
  • Yousefi, T., E. Shojaeizadeh, F. Veysi, and S. Zinadini. 2012. An experimental investigation on the effect of pH variation of MWCNT–H2O nanofluid on the efficiency of a flat-plate solar collector. Solar Energy 86:771–79. doi:10.1016/j.solener.2011.12.003.
  • Yurddaş, A., Y. Çerçi, P. Sarı Çavdar, and A. Bektaş. 2022. The effects of the use of hybrid and mono nanofluids on thermal performance in flat-plate solar collectors. Environmental Progress & Sustainable Energy 41:e13770. doi:10.1002/ep.13770.
  • Zhou, X., Y. Jiang, Y. Wang, Y. Jiang, and H. Huang. 2020. Comprehensive heat transfer performance analysis of liquid metal based nanofluid laminar flow in circular tube. International Journal of Mechanical Sciences 175:105530. doi:10.1016/j.ijmecsci.2020.105530.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.