90
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Application of ultrasound technology in the intensification of biodiesel production from bitter almond oil (BAO) in the presence of biocompatible heterogeneous catalyst synthesized from camel bone

, , &
Pages 4064-4086 | Received 01 Aug 2022, Accepted 20 Jan 2023, Published online: 19 Apr 2023

References

  • Abduh, M. Y., W. van Ulden, V. Kalpoe, H. H. van de Bovenkamp, R. Manurung, and H. J. Heeres. 2013. Biodiesel synthesis from Jatropha curcas L. oil and ethanol in a continuous centrifugal contactor separator. European Journal of Lipid Science and Technology 115:123–31. doi:10.1002/ejlt.201200173.
  • Ali, R. M., M. R. Elkatory, and H. A. Hamad. 2020. Highly active and stable magnetically recyclable CuFe2O4 as a heterogenous catalyst for efficie. Fuel 160:58–70. doi:10.1016/j.apenergy.2015.09.023.
  • Ali, L. H., and A. B. Fadhil. 2013. Biodiesel production from spent frying oil of fish via alkali-catalyzed transesterification. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 35 (6):564–73. doi:10.1080/15567036.2010.513218.
  • Arumugam, A., and V. Ponnusami. 2019. Biodiesel production from Calophyllum inophyllum oil a potential non-edible feedstock: An overview. Renew Energy 131:459–71. doi:10.1016/j.renene.2018.07.059.
  • Atabani, A., T. Mahlia, I. A. Badruddin, H. Masjuki, W. Chong, and K. T. Lee. 2013. Investigation of physical and chemical properties of potential edible and non-edible feedstocks for biodiesel production, a comparative analysis. Renewable and Sustainable Energy Reviews 21:749–55.
  • Atapour, M., and H. -R. Kariminia. 2011. Characterization and transesterification of Iranian bitter almond oil for biodiesel production. Applied Energy 88 (7):2377–81. doi:10.1016/j.apenergy.2011.01.014.
  • Attari, A., A. Abbaszadeh-Mayvan, and A. Taghizadeh-Alisaraei. 2022. Process optimization of ultrasonic-assisted biodiesel production from waste cooking oil using waste chicken eggshell-derived CaO as a green heterogeneous catalyst Biomass and Bioenergy. Biomass & bioenergy, 158 (2022):106357. Article 106357. doi:10.1016/j.biombioe.2022.106357.
  • Awogbemi, O., D. Von Kallon, and V. S. Aigbodion. 2021. Trends in the development and utilization of agricultural wastes as heterogeneous catalyst for biodiesel production. The Journal of the Energy Institute 98:244e258. doi:10.1016/j.joei.2021.06.017.
  • Birla, A., B. Singh, S. N. Upadhyay, and Y. C. Sharma. 2012. Kinetics studies of synthesis of biodiesel from waste frying oil using a heterogeneous catalyst derived from snail shell. Bioresource Technology 106:95–100. doi:10.1016/j.biortech.2011.11.065.
  • Catarino, M., E. Ferreira, A. P. Soares Dias, and J. Gomes. 2020. Dry washing biodiesel purification using fumed silica sorbent. Chemical Engineering Journal 386:123930. doi:10.1016/j.cej.2019.123930.
  • Chakraborty, R., S. Bepari, and A. Banerjee. 2011. Application of calcined waste fish (Labeo rohita) scale as low-cost heterogeneous catalyst for biodiesel synthesis. Bioresource Technology 102:3610–18. doi:10.1016/j.biortech.2010.10.123.
  • Chen, G., R. Shan, J. Shi, and B. Yan. 2014. Ultrasonic-assisted production of biodiesel from transesterification of palm oil over ostrich eggshell-derived CaO catalysts. Bioresource Technology 171:428–32. biortech.2014.08.102. doi:10.1016/j.biortech.2014.08.102.
  • Cho, Y. B., and G. Seo. 2010. High activity of acid-treated quail eggshell catalysts in the transesterification of palm oil with methanol. Bioresource Technology 101:8515–19. doi:10.1016/j.biortech.2010.06.082.
  • Correia, L. M., R. M. A. Saboya, N. de Sousa Campelo, J. A. Cecilia, E. Rodríguez-Castellón, C. L. Cavalcante, and R. S. Vieira. 2014. Characterization of calcium oxide catalysts from natural sources and their application in the transesterification of sunflower oil. Bioresource Technology 151:207–13. doi:10.1016/j.biortech.2013.10.046.
  • Dadhania, H., D. Raval, and A. Dadhania. 2021. Magnetically separable heteropolyanion based ionic liquid as a heterogeneous catalyst for ultrasound mediated biodiesel production through esterification of fatty acids. Fuel 296:120673. doi:10.1016/j.fuel.2021.120673.
  • Dorado, M. P. 2008. Raw materials to produce low-cost biodiesel. In ed. A. Nag, Biofuels refining and performance 107–47. New York: McGraw-Hill.
  • Fadhil, A. B., E. T. B. Al-Tikrity, and K. K. Ibraheem. 2019. Transesterification of bitter almond oil as a new non-edible feedstock with mixed alcohols system: Parameter optimization and analysis of biodiesel. Waste and Biomass Valorization 10:1597–608. doi:10.1007/s12649-017-0172-y.
  • Farooq, M., A. Ramli, and A. Naeem. 2015. Biodiesel production from low FFA waste cooking oil using heterogeneous catalyst derived from chicken bones. Renew Energy 76:362–68. doi:10.1016/j.renene.2014.11.042.
  • Fayyazi, E., B. Ghobadian, G. Najafi, and B. Hosseinzadeh. 2014. Genetic algorithm approach to optimize biodiesel production by ultrasonic system. Chemical Product and Process Modeling 9:59–70. doi:10.1515/cppm-2013-0043.
  • Guanyi, C. 2014. Transesterification of palm oil to biodiesel using rice husk ashbased catalysts. Bioresource Technology 171:428–32.
  • Gupta, A. R., S. V. Yadav, and V. K. Rathod. 2015. Enhancement in biodiesel production using waste cooking oil and calcium diglyceroxide as a heterogeneous catalyst in presence of ultrasound. Fuel 158:800–06. doi:10.1016/j.fuel.2015.05.064.
  • Hindryawati, N., and G. Pragas. 2015. Novel utilization of waste marine sponge (Demospongiae) as a catalyst in ultrasound-assisted transesterification of waste cooking oil. Ultrasonics Sonochemistry 22:454–62. doi:10.1016/j.ultsonch.2014.04.011.
  • Hsiao, M. C., C. C. Lin, and Y. H. Chang. 2011. Microwave irradiation-assisted transesterification of soybean oil to biodiesel catalyzed by nanopowder calcium oxide. Fuel 90:1963–67. doi:10.1016/j.fuel.2011.01.004.
  • Hua, Y., M. Omar, C. Nolasco-Hipolito, and Y. H. Taufiq-Yap. 2015. Waste ostrich- and chicken-eggshells as heterogeneous base catalyst for biodiesel production from used cooking oil: Catalyst characterization and biodiesel yield performance. Applied Energy 160:58–70. doi:10.1016/j.apenergy.2015.09.023.
  • Ibrahim, H., A. S. Silitonga, D. S. Rahmawaty, A. H. Sebayang, S. Khairil, J. Sutrisno, A. Razak, J. Sutrisno, and A. Razak. 2020. An ultrasound assisted transesterification to optimize biodiesel production from rice bran oil. International Journal of Technology 11 (2):225–34. doi:10.14716/ijtech.v11i2.905.
  • Ideris, F., A. H. Shamsuddin, S. Nomanbhay, F. Kusumo, A. S. Silitonga, M. Y. Ong, H. C. Ong, and T. M. I. Mahlia. 2021. Optimization of ultrasound-assisted oil extraction from Canarium odontophyllum kernel as a novel biodiesel feedstock. Journal of Cleaner Production 288:125563. doi:10.1016/j.jclepro.2020.125563.
  • Jairam, S., P. Kolar, R. Sharma-Shivappa Ratna, J. A. Osborne, and J. P. Davis. 2012. KI-impregnated oyster shell as a solid catalyst for soybean oil transesterification. Bioresource Technology 104:329–35. doi:10.1016/j.biortech.2011.10.039.
  • Jamil, U., A. Husain Khoja, R. Liaquat, S. Raza Naqvi, N. W. W. Omar nor, and A. S. N. Amin. 2020. Copper and calcium-based metal organic framework (MOF) catalyst for biodiesel production from waste cooking oil: A process optimization study. Energy Conversion and Management 215:112934. doi:10.1016/j.enconman.2020.112934.
  • Jayakumar, M., K. B. Gebeyehu, K. V. Selvakumar, S. Parvathy, M. Kim, and N. Karmegam. 2022. Waste Ox bone based heterogeneous catalyst synthesis, characterization, utilization and reaction kinetics of biodiesel generation from Jatropha curcas oil. Chemosphere 288:132534. doi:10.1016/j.chemosphere.2021.132534.
  • Khan, H. M., T. Iqbal, C. H. Ali, A. Javaid, and I. I. Cheema. 2020. Sustainable biodiesel production from waste cooking oil utilizing waste ostrich (Struthio camelus) bones derived heterogeneous catalyst. Fuel 277:118091. doi:10.1016/j.fuel.2020.118091.
  • Khemthong, P., C. Luadthong, W. Nualpaeng, P. Changsuwan, P. Tongprem, N. Viriya-Empikul, and K. Faungnawakij. 2012. Industrial eggshell wastes as the heterogeneous catalysts for microwave-assisted biodiesel production. Catalysis Today 190:112–16. doi:10.1016/j.cattod.2011.12.024.
  • Krishnan, S. G., F. -L. Pua, and S. N. S. Jaafar. 2020. Synthesis and characterization of local biomass supported magnetic catalyst for esterification reaction. Materials Today: Proceedings 31:161–65. doi:10.1016/j.matpr.2020.01.513.
  • Kuniyil, M., J. V. Shanmukha Kumar, S. F. Adil, M. E. Assal, M. R. Shaik, M. Khan, A. Al-Warthan, and M. R. H. Siddiqui. 2021. Production of biodiesel from waste cooking oil using ZnCuO/N-doped graphene nanocomposite as an efficient heterogeneous catalyst. Arabian Journal of Chemistry 14 (3):102982. doi:10.1016/j.arabjc.2020.102982.
  • Lesbani, A., Y. Susi, M. Verawaty, and R. Mohadi. 2015. Calcium oxide decomposed from chicken’s and goat’s bones as catalyst for converting discarded cooking oil to be biodiesel. Aceh International Journal of Science and Technology 4 (1):7–13. doi:10.13170/aijst.4.1.2124.
  • Lin, Y., K. T. T. Amesho, C. Chen, P. Cheng, and F. Chou. 2020. A cleaner process for green biodiesel synthesis from waste cooking oil using recycled waste oyster shells as a sustainable base heterogeneous catalyst under the microwave heating system. Sustainable Chemistry and Pharmacy 17:100310. doi:10.1016/j.scp.2020.100310.
  • Madhu, D., S. B. Chavan, V. Singh, B. Singh, and Y. C. Sharma. 2016. An economically viable synthesis of biodiesel from a crude Millettia pinnata oil of Jharkhand, India as feedstock and crab shell derived catalyst. Bioresource Technology 214:210–17. doi:10.1016/j.biortech.2016.04.055.
  • Maneerung, T., S. Kawi, Y. Dai, and C. H. Wang. 2016. Sustainable biodiesel production via transesterification of waste cooking oil by using CaO catalysts prepared from chicken manure. Energy Conversion and Management 123:487–97. doi:10.1016/j.enconman.2016.06.071.
  • Marinkovi, D. M., M. V. Stankovi, A. V. Veli, J. M. Avramovi, M. R. Miladinovi, O. O. Stamenkovi, V. B. Veljkovi, and M. Jovanovi. 2016. Calcium oxide as a promising heterogeneous catalyst for biodiesel production. Current State and Perspectives 56:1387–408. doi:10.1016/j.rser.2015.12.007.
  • Mengistu, T. J., and A. S. Reshad. 2022. Synthesis and characterization of a heterogeneous catalyst from a mixture of waste animal teeth and bone for castor seed oil biodiesel production. Heliyon 8:e09724. doi:10.1016/j.heliyon.2022.e09724.
  • Mootabadi, H., B. Salamatinia, S. Bhatia, and A. Z. Abdullah. 2010. Ultrasonic-assisted biodiesel production process from palm oil using alkaline earth metal oxides as the heterogeneous catalysts. Fuel 89:1818–25. doi:10.1016/j.fuel.2009.12.023.
  • Munir, M., M. Ahmad, M. Saeed, A. Waseem, M. Rehan, A. -S. Nizami, M. Zafar, M. Arshad, and S. Sultana. 2019. Sustainable production of bioenergy from novel non-edible seed oil (Prunus cerasoides) using bimetallic impregnated montmorillonite clay catalyst. Renewable and Sustainable Energy Reviews 109:321–32. doi:10.1016/j.rser.2019.04.029.
  • National Research Council (NRC). 2008. Water implications of biofuels production in the United States, 2007. http://books.nap.edu.
  • Ngamcharussrivichai, C., P. Nunthasanti, S. Tanachai, and K. Bunyakiat. 2010. Biodiesel production through transesterification over natural calciums. Fuel Processing Technology 91:1409–15. doi:10.1016/j.fuproc.2010.05.014.
  • Obadiah, A., G. A. Swaroopa, S. V. Kumar, K. R. Jeganathan, and A. Ramasubbu. 2012. Biodiesel production from palm oil using calcined waste animal bone as catalyst. Bioresource Technology 116:512–16. doi:10.1016/j.biortech.2012.03.112.
  • Ooi, H. K., X. N. Koh, H. C. Ong, H. V. Lee, M. S. Mastuli, Y. F. Taufiq-Yap, F. A. Alharthi, A. A. Alghamdi, and N. Asikin Mijan. 2021. Progress on modified calcium oxide derived waste-shell catalysts for biodiesel production. Catalysts 11 (2):194. doi:10.3390/catal11020194.
  • Piker, A., B. Tabah, N. Perkas, and A. Gedanken. 2016. A green and low-cost room temperature biodiesel production method from waste oil using egg shells as catalyst. Fuel 182:34–41. doi:10.1016/j.fuel.2016.05.078.
  • Sahani, S., T. Roy, and Y. C. Sharma. 2020. Smart waste management of waste cooking oil for large scale high quality biodiesel production using Sr-Ti mixed metal oxide as solid catalyst: Optimization and E-metrics studies. Waste Manag 108:189–201. doi:10.1016/j.wasman.2020.04.036.
  • Seffati, K., H. Esmaeili, B. Honarvar, and N. Esfandiari. 2020. AC/CuFe2O4@CaO as a novel nanocatalyst to produce biodiesel from chicken fat, Renew. Energy 147:25–34. doi:10.1016/j.renene.2019.08.105.
  • Sharma, A., P. Kodgire, and S. S. Kachhwaha. 2020. Investigation of ultrasound-assisted KOH and CaO catalyzed transesterification for biodiesel production from waste cotton-seed cooking oil: Process optimization and conversion rate evaluation. Journal of Cleaner Production 259:120982. doi:10.1016/j.jclepro.2020.120982.
  • Silitonga, A., A. Shamsuddin, T. Mahlia, J. Milano, F. Kusumo, J. Siswantoro, S. Dharma, A. Sebayang, H. Masjuki, and H. C. Ong. 2020. Biodiesel synthesis from Ceiba pentandra oil by microwave irradiation-assisted transesterification: ELM modeling and optimization. Renew Energy 146:1278e1291. doi:10.1016/j.renene.2019.07.065.
  • Sobczak, A., Z. Kowalski, Z. Wzorek, and Z. Wzorek. 2009. Preparation of hydroxyapatite from animal bones. Acta of Bioengineering and Biomechanics / Wroclaw University of Technology 11:37–43. doi:10.2478/v10026-009-0010-5.
  • Syazwani, O. N., S. H. Teo, A. Islam, and Y. H. Taufiq-Yap. 2017. Transesterification activity and characterization of natural CaO derived from waste venus clam (Tapes belcheri S.) material for enhancement of biodiesel production. Process Safety and Environmental Protection 105:303–15. doi:10.1016/j.psep.2016.11.011.
  • Tan, Y. H., M. O. Abdullah, C. Nolasco-Hipolito, and Y. H. Taufiq-Yap. 2015. Waste ostrich- and chicken-eggshells as heterogeneous base catalyst for biodiesel production from used cooking oil: Catalyst characterization and biodiesel yield performance. Applied Energy 160:58–70. doi:10.1016/j.apenergy.2015.09.023.
  • Tuan Hoang, A., V. Dung Tran, V. Huong Dong, and L. Anh Tuan. 2022. An experimental analysis on physical properties and spray characteristics of an ultrasound-assisted emulsion of ultra-low-sulphur diesel and Jatropha-based biodiesel. Journal of Marine Engineering & Technology 21 (2):73–81. doi:10.1080/20464177.2019.1595355.
  • U.S. Energy Information Administration. Global Primary Energy Consumption by Energy Source (2010–2050). Accessed December 21 2021. https://www.eia.gov/todayinenergy/detail.php?id=41433.
  • Wali Khan, I., A. N. M. Farooq, Z. A. Ghazi, T. Perveen, F. Saeed, T. Malik, and T. Malik. 2022. Biodiesel production by valorizing waste non-edible wild olive oil using heterogeneous base catalyst: Process optimization and cost estimation. Fuel 320:123828. doi:10.1016/j.fuel.2022.123828.
  • Wang, L., and J. Yang. 2007. Transesterification of soybean oil with nano-MgO or not in supercritical and subcritical methanol. Fuel 86:328–33. doi:10.1016/j.fuel.2006.07.022.
  • Yang, L., A. Zhang, and X. Zheng. 2009. Shrimp shell catalyst for biodiesel production. Energy & Fuels 23:3859–65. doi:10.1021/ef900273y.
  • Yan, B., Y. Zhang, G. Chen, R. Shan, W. Ma, and C. Liu. 2016. The utilization of hydroxyapatite- supported CaO-Ceo2 catalyst for biodiesel production. Energy Convers Manag 130:156–64. doi:10.1016/j.enconman.2016.10.052.
  • Yaşar, F. 2019. Biodiesel production via waste eggshell as a low- cost heterogeneous catalyst: Its effects on some critical fuel properties and comparison with CaO. Fuel 255:115828. doi:10.1016/j.fuel.2019.115828.
  • Zabeti, M., W. M. A. Wan Daud, and M. K. Aroua. 2009. Activity of solid catalysts for biodiesel production: A review. Fuel Processing Technology 90 (6):770–77. doi:10.1016/j.fuproc.2009.03.010.
  • Zaman, T., M. S. Mostari, M. A. Al Mahmood, and M. S. Rahman. 2018. Evolution and characterization of eggshell as a potential candidate of raw material. Ceramica 64:236–41. doi:10.1590/0366-69132018643702349.
  • Zhao, H., G. Zhang, S. Chong, N. Zhang, and Y. Liu. 2015. MnO2/CeO2 for catalytic ultrasonic decolorisation of methyl orange: Process parameters and mechanisms. Ultrasonics Sonochemistry 27:474–79. doi:10.1016/j.ultsonch.2015.06.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.