1,128
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Particle size impact on pyrolysis of multi-biomass: a solid-state reaction modeling study

, &
Pages 3681-3691 | Received 21 Feb 2023, Accepted 25 Mar 2023, Published online: 17 Apr 2023

References

  • Ali, S., S. A. Hussain, T. M. Mohd, and A. A. Nuruddin. 2019. Investigation of kinetic decomposition characteristics of Malaysian wood species using Coats and Redfern (CR) method. Materials Today: Proceedings 42:178–85. doi:10.1016/j.matpr.2020.11.341.
  • Asadullah, M., S. Zhang, and C. Z. Li. 2010. Evaluation of structural features of chars from pyrolysis of biomass of different particle sizes. Fuel Processing Technology 91:877–81. doi:10.1016/j.fuproc.2009.08.008.
  • Bach, Q. V., and W. H. Chen. 2017. Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): A state-of-the-art review. Bioresource Technology 246:88–100. doi:10.1016/j.biortech.2017.06.087.
  • Boumanchar, I., Y. Chhiti, F. E. M. Alaoui, M. Elkhouakhi, L. Deshayes, F. Bentiss, C. Jama, M. Bensitel. 2020. Thermo-chemical behavior of biomass, coal, municipal solid wastes and their mixtures. 2020 5th Int. Conference on Renewable Energy in Developing Countries 1–5. doi:10.1109/REDEC49234.2020.9163853.
  • Coats, A. W., and J. P. Redfern. 1964. Kinetic parameters from thermogravimetric data [12]. Nature 201:68–69. doi:10.1038/201068a0.
  • Das, P., V. P. Chandramohan, T. Mathimani, and A. Pugazhendhi. 2021. A comprehensive review on the factors affecting thermochemical conversion efficiency of algal biomass to energy. The Science of the Total Environment 766:144213. doi:10.1016/j.scitotenv.2020.144213.
  • El Hanandeh, A., A. Albalasmeh, and M. Gharaibeh. 2021. Effect of pyrolysis temperature and biomass particle size on the heating value of biocoal and optimization using response surface methodology. Biomass & bioenergy 151:106163. doi:10.1016/j.biombioe.2021.106163.
  • Elkhalifa, S., H. R. Mackey, T. Al-Ansari, O. Elhassan, S. Mansour, G. McKay, and G. McKay. 2022. Biochar development from thermal TGA studies of individu. Biomass Convers Biorefinery. doi:10.1007/s13399-022-02441-0.
  • Foong, S. Y., R. K. Liew, Y. Yang, Y. W. Cheng, P. N. Y. Yek, W. A. Wan Mahari, X. Y. Lee, C. S. Han, D.V.N. Vo, Q. Van Le, et al. 2020. Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions. Chemical Engineering Journal 389:124401. doi:10.1016/j.cej.2020.124401.
  • Gözke, G., and K. Açıkalın. 2021. Pyrolysis characteristics and kinetics of sour cherry stalk and flesh via thermogravimetric analysis using isoconversional methods. Journal of Thermal Analysis and Calorimetry 146:893–910. doi:10.1007/s10973-020-10055-9.
  • Haykiri-Acma, H. 2006. The role of particle size in the non-isothermal pyrolysis of hazelnut shell. Journal of Analytical and Applied Pyrolysis 75:211–16. doi:10.1016/j.jaap.2005.06.002.
  • Islam, M. N., S. B. Ratul, A. Sharmin, K. S. Rahman, M. Ashaduzzaman, and G. M. N. Uddin. 2019. Comparison of calorific values and ash content for different woody biomass components of six mangrove species of Bangladesh Sundarbans. Journal of the Indian Academy of Wood Science 16:110–17. doi:10.1007/s13196-019-00246-9.
  • Khoshnevisan, B., N. Duan, P. Tsapekos, M. K. Awasthi, Z. Liu, A. Mohammadi, I. Angelidaki, D. Tsang, Z. Zhang, J. Pan, et al. 2021. A critical review on livestock manure biorefinery technologies: Sustainability, challenges, and future perspectives. Renewable and Sustainable Energy Reviews 135:110033. doi:10.1016/j.rser.2020.110033.
  • Kumar, R., V. Strezov, H. Weldekidan, J. He, S. Singh, T. Kan, and B. Dastjerdi. 2020. Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels. Renewable and Sustainable Energy Reviews 123:109763. doi:10.1016/J.RSER.2020.109763.
  • Mariyam, S., M. Alherbawi, S. Pradhan, T. Al, and A. Gordon. 2023. Biochar yield prediction using response surface methodology: Effect of fixed carbon and pyrolysis operating conditions. Biomass Convers Biorefinery. doi:10.1007/s13399-023-03825-6.
  • Mariyam, S., M. Alherbawi, N. Rashid, T. Al-Ansari, and G. McKay. 2022. Bio-oil production from multi-waste biomass co-pyrolysis using analytical Py–GC/MS. Energies 15:15. doi:10.3390/en15197409.
  • Mariyam, S., M. Shahbaz, T. Al-Ansari, H. R. Mackey, and G. McKay. 2022. A critical review on co-gasification and co-pyrolysis for gas production. Renewable and Sustainable Energy Reviews 161:112349. doi:10.1016/j.rser.2022.112349.
  • McNutt, J., and Q. (. He. 2019. Spent coffee grounds: A review on current utilization. Journal of Industrial and Engineering Chemistry 71:78–88. doi:10.1016/j.jiec.2018.11.054.
  • Mlonka-Mędrala, A., A. Magdziarz, T. Dziok, M. Sieradzka, and W. Nowak. 2019. Laboratory studies on the influence of biomass particle size on pyrolysis and combustion using TG GC/MS. Fuel 252:635–45. doi:10.1016/j.fuel.2019.04.091.
  • Naqvi, S. R., R. Tariq, Z. Hameed, I. Ali, M. Naqvi, W. H. Chen, S. Ceylan, H. Rashid, J. Ahmad, S. A. Taqvi, et al. 2019. Pyrolysis of high ash sewage sludge: Kinetics and thermodynamic analysis using Coats-Redfern method. Renewable Energy 131:854–60. doi:10.1016/j.renene.2018.07.094.
  • Neves, D., H. Thunman, A. Matos, L. Tarelho, and A. Gómez-Barea. 2011. Characterization and prediction of biomass pyrolysis products. Progress in Energy and Combustion Science 37:611–30. doi:10.1016/j.pecs.2011.01.001.
  • Parthasarathy, P., T. Al-Ansari, H. R. Mackey, K. Sheeba Narayanan, and G. McKay. 2022. A review on prominent animal and municipal wastes as potential feedstocks for solar pyrolysis for biochar production. Fuel 316:123378. doi:10.1016/j.fuel.2022.123378.
  • Parthasarathy, P., A. Fernandez, T. Al-Ansari, H. R. Mackey, R. Rodriguez, and G. McKay. 2021. Thermal degradation characteristics and gasification kinetics of camel manure using thermogravimetric analysis. Journal of Environmental Management 287:112345. doi:10.1016/j.jenvman.2021.112345.
  • Qureshi, K. M., A. N. Kay Lup, S. Khan, F. Abnisa, and W. M. A. Wan Daud. 2018. A technical review on semi-continuous and continuous pyrolysis process of biomass to bio-oil. Journal of Analytical and Applied Pyrolysis 131:52–75. doi:10.1016/J.JAAP.2018.02.010.
  • Rasool, T., I. Najar, V. C. Srivastava, and A. Pandey. 2021. Pyrolysis of almond (Prunus amygdalus) shells: Kinetic analysis, modelling, energy assessment and technical feasibility studies. Bioresource Technology 337:125466. doi:10.1016/j.biortech.2021.125466.
  • Raza, M., B. Abu-Jdayil, A. H. Al-Marzouqi, and A. Inayat. 2022. Kinetic and thermodynamic analyses of date palm surface fibers pyrolysis using Coats-Redfern method. Renew Energy 183:67–77. doi:10.1016/j.renene.2021.10.065.
  • Saadatkhah, N., A. Carillo Garcia, S. Ackermann, P. Leclerc, M. Latifi, S. Samih, G. S. Patience, and J. Chaouki. 2020. Experimental methods in chemical engineering: Thermogravimetric analysis—TGA. The Canadian Journal of Chemical Engineering 98:34–43. doi:10.1002/cjce.23673.
  • Singh, P., R. K. Singh, P. V. Gokul, S. -U. Hasan, and A. N. Sawarkar. 2020. Thermal degradation and pyrolysis kinetics of two Indian rice husk varieties using thermogravimetric analysis. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 1–12. doi:10.1080/15567036.2020.1736215.
  • Somerville, M., and A. Deev. 2020. The effect of heating rate, particle size and gas flow on the yield of charcoal during the pyrolysis of radiata pine wood. Renew Energy 151:419–25. doi:10.1016/j.renene.2019.11.036.
  • Suriapparao, D. V., and R. Vinu. 2018. Effects of biomass particle size on slow pyrolysis kinetics and fast pyrolysis product distribution. Waste and Biomass Valorization 9:465–77. doi:10.1007/s12649-016-9815-7.
  • Tahir, A. H. F., A. H. M. J. Al-Obaidy, and F. H. Mohammed. 2020. Biochar from date palm waste, production, characteristics and use in the treatment of pollutants: A review. IOP Conference Series: Materials Science and Engineering 737:737. doi:10.1088/1757-899X/737/1/012171.
  • Tan, Y. L., M. J. Ahmed, E. H. Hummadi, and B. H. Hameed. 2019. Kinetics of pyrolysis of durian (Durio zibethinus L.) shell using thermogravimetric analysis. Journal of Physical Science 30:65–79. doi:10.21315/jps2019.30.s1.4.
  • Vassilev, S. V., D. Baxter, L. K. Andersen, and C. G. Vassileva. 2010. An overview of the chemical composition of biomass. Fuel 89:913–33. doi:10.1016/j.fuel.2009.10.022.
  • Xiao, R., W. Yang, X. Cong, K. Dong, J. Xu, D. Wang, Yang, X. 2020. Thermogravimetric analysis and reaction kinetics of lignocellulosic biomass pyrolysis. Energy 201:117537. doi:10.1016/j.energy.2020.117537.
  • Zuhara, S., H. R. Mackey, T. Al-Ansari, and G. McKay. 2022. A review of prospects and current scenarios of biomass co-pyrolysis for water treatment. Biomass Convers Biorefinery. doi:10.1007/s13399-022-03011-0.