114
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Investigation of utilizing carbonized lotus root as photothermal material in the solar steam generation system

, , &
Pages 3359-3368 | Received 04 Nov 2022, Accepted 15 Mar 2023, Published online: 03 Apr 2023

References

  • Alvarez, P. J. J., C. K. Chan, M. Elimelech, N. J. Halas, and D. Villagan. 2018. Emerging opportunities for nanotechnology to enhance water security. Nature Nanotechnology 13 (8):634–41. doi:10.1038/s41565-018-0203-2.
  • Chang, C., C. Yang, Y. Liu, P. Tao, C. Song, W. Shang, J. Wu, and T. Deng. 2016. Efficient solar-thermal energy harvest driven by interfacial plasmonic heating-assisted evaporation. Acs Applied Materials & Interfaces 8 (35):23412–18. doi:10.1021/acsami.6b08077.
  • Chen, Y., G. Zhao, L. Ren, H. Yang, X. Xiao, and W. Xu. 2020. Blackbody-inspired array structural polypyrrole-sunflower disc with extremely high light absorption for efficient photothermal evaporation. Acs Applied Materials & Interfaces 12 (41):46653–60. doi:10.1021/acsami.0c11549.
  • Fang, Q., T. Li, Z. Chen, H. Lin, P. Wang, and F. Liu. 2019. Full biomass-derived solar stills for robust and stable evaporation to collect clean water from various water-bearing media. Acs Applied Materials & Interfaces 11 (11):10672–79. doi:10.1021/acsami.9b00291.
  • Fang, J., J. Liu, J. Gu, Q. Liu, W. Zhang, H. Su, and D. Zhang. 2018. Hierarchical porous carbonized lotus seedpods for highly efficient solar steam generation. Chemistry of Materials 30 (18):6217–21. doi:10.1021/acs.chemmater.8b01702.
  • Fan, Z., J. Ren, H. Bai, P. He, L. Hao, N. Liu, B. Chen, R. Niu, and J. Gong. 2023. Shape-controlled fabrication of MnO/C hybrid nanoparticle from waste polyester for solar evaporation and thermoelectricity generation. Chemical Engineering Journal 451:138534. doi:10.1016/j.cej.2022.138534.
  • Gao, M., L. Zhu, C. K. Peh, and G. W. Ho. 2019. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy & Environmental Science 12 (3):841–64. doi:10.1039/C8EE01146J.
  • Guo, Y., H. Lu, F. Zhao, X. Zhou, W. Shi, and G. Yu. 2020. Biomass-derived hybrid hydrogel evaporators for cost-effective solar water purification. Advanced Materials 32 (11). doi:10.1002/adma.201907061.
  • He, P., L. Hao, N. Liu, H. Bai, R. Niu, and J. Gong. 2021. Controllable synthesis of sea urchin-like carbon from metal-organic frameworks for advanced solar vapor generators. Chemical Engineering Journal 423:130268. doi:10.1016/j.cej.2021.130268.
  • Jun, Y. -S., X. Wu, D. Ghim, Q. Jiang, S. Cao, and S. Singamaneni. 2019. Photothermal membrane water treatment for two worlds. Accounts of Chemical Research 52 (5):1215–25. doi:10.1021/acs.accounts.9b00012.
  • Liu, Y., K. Ai, J. Liu, M. Deng, Y. He, and L. Lu. 2013. Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Advanced Materials 25 (9):1353–59. doi:10.1002/adma.201204683.
  • Liu, N., L. Hao, B. Zhang, R. Niu, J. Gong, and T. Tang. 2022. Rational design of high-performance bilayer solar evaporator by using waste polyester-derived porous carbon-coated wood. Energy & Environmental Materials 5 (2):617–26. doi:10.1002/eem2.12199.
  • Song, C., T. Li, W. Guo, Y. Gao, C. Yang, Q. Zhang, D. An, W. Huang, M. Yan, and C. Guo. 2018. Hydrophobic Cu12Sb4S13-deposited photothermal film for interfacial water evaporation and thermal antibacterial activity. New Journal of Chemistry 42 (5):3175–79. doi:10.1039/C7NJ04545J.
  • Wang, Z., Y. Liu, P. Tao, Q. Shen, N. Yi, F. Zhang, Q. Liu, C. Song, D. Zhang, W. Shang, et al. 2014. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface. Small 10 (16):3234–39. doi:10.1002/smll.201401071.
  • Wang, Z., Y. Wang, G. Xu, and J. Ren. 2019. Sustainable desalination process selection: Decision support framework under hybrid information. Desalination 465:44–57. doi:10.1016/j.desal.2019.04.022.
  • Wilson, H. M., D. J. Ahirrao, S. R. Ar, and N. Jha. 2020. Biomass-derived porous carbon for excellent low intensity solar steam generation and seawater desalination. Solar Energy Materials and Solar Cells 215. doi:10.1016/j.solmat.2020.110604.
  • Wu, X., T. Gao, C. Han, J. Xu, G. Owens, and H. Xu. 2019. A photothermal reservoir for highly efficient solar steam generation without bulk water. Science Bulletin 64 (21):1625–33. doi:10.1016/j.scib.2019.08.022.
  • Wu, X., M. E. Robson, J. L. Phelps, J. S. Tan, B. Shao, G. Owens, and H. Xu. 2019. A flexible photothermal cotton-CuS nanocage-agarose aerogel towards portable solar steam generation. Nano Energy 56:708–15. doi:10.1016/j.nanoen.2018.12.008.
  • Xue, Y., Z. Ge, L. Yang, and X. Du. 2019. Peak shaving performance of coal-fired power generating unit integrated with multi-effect distillation seawater desalination. Applied Energy 250:175–84. doi:10.1016/j.apenergy.2019.04.190.
  • Zhang, S., L. Zang, T. Dou, J. Zou, Y. Zhang, and L. Sun. 2020. Willow catkins-derived porous carbon membrane with hydrophilic property for efficient solar steam generation. ACS Omega 5 (6):2878–85. doi:10.1021/acsomega.9b03718.
  • Zhou, X., J. Li, C. Liu, F. Wang, H. Chen, C. Zhao, H. Sun, and Z. Zhu. 2020. Carbonized tofu as photothermal material for highly efficient solar steam generation. International Journal of Energy Research 44 (11):9213–21. doi:10.1002/er.5603.
  • Zhu, L., M. Gao, C. K. N. Peh, and G. W. Ho. 2019. Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications. Nano Energy 57:507–18. doi:10.1016/j.nanoen.2018.12.046.
  • Zhu, M., Y. Li, G. Chen, F. Jiang, Z. Yang, X. Luo, Y. Wang, S. D. Lacey, J. Dai, C. Wang, et al. 2017. Tree-inspired design for high-efficiency water extraction. Advanced Materials 29:44. doi:10.1002/adma.201704107.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.