115
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The effect of wet-grinding on coal mechanochemical pre-desulfurization

, , &
Pages 4432-4445 | Received 22 Nov 2022, Accepted 20 Mar 2023, Published online: 23 Apr 2023

References

  • Ahmad W., I. Ahmad, R. Ahmad, Z. ZUllah and M. Ibrahim. 2022. Desulfurization of Lakhra coal by combined leaching and catalytic oxidation techniques. International Journal of Coal Preparation and Utilization 42 (2):124–140. doi:10.1080/19392699.2019.1583648.
  • Anwar, F., R. Nasir, K. Maqsood, H. Suleman, F. Rehman, A. Ali, A. Abdulrahman, A. Ahmad, and A. B. Mahfouz. 2020. Desulfurization and optimization of low-grade local coal by sequential KOH and HCl treatment. Journal of Sulfur Chemistry 41 (1):44–56. doi:10.1080/17415993.2019.1662907.
  • Ayhan, F. D., H. Abakay, and A. Saydut. 2005. Desulfurization and deashing of hazro coal via a flotation method. Energ Fuel 19 (3):1003–07. doi:10.1021/ef049747r.
  • Bai, S., P. Yu, C. Li, S. Wen, and Z. Ding. 2019. Depression of pyrite in a low-alkaline medium with added calcium hypochlorite: Experiment, visual MINTEQ models, XPS, and ToF–SIMS studies. Minerals Engineering 141:105853. doi:10.1016/j.mineng.2019.105853.
  • Cai, S. 2021. A novel method for removing organic sulfur from high-sulfur coal: Migration of organic sulfur during microwave treatment with NaOH-H2O2. Fuel 289:119800. doi:10.1016/j.fuel.2020.119800.
  • Dong, Y., W. Zeng, H. Lin, and Y. He. 2020. Preparation of a novel water-soluble organosilane coating and its performance for inhibition of pyrite oxidation to control acid mine drainage at the source. Applied Surface Science 531:147328. doi:10.1016/j.apsusc.2020.147328.
  • Dopieralski, P., J. Ribas–Arino, P. Anjukandi, M. Krupicka, and D. Marx. 2017. Unexpected mechanochemical complexity in the mechanistic scenarios of disulfide bond reduction in alkaline solution. Nature Chemistry 9 (2):164–70. doi:10.1038/nchem.2632.
  • El-Midany, A. A., and M. A. Abdel-Khalek. 2014. Reducing sulfur and ash from coal using Bacillus subtilis and Paenibacillus polymyxa. Fuel 115:589–95. doi:10.1016/j.fuel.2013.07.076.
  • Eze, A. A., E. R. Sadiku, W. K. Kupolati, J. Snyman, J. M. Ndambuki, T. Jamiru, M. O. Durowoju, I. D. Ibrahim, M. B. Shongwe, and D. A. Desai. 2021. Wet ball milling of niobium by using ethanol, determination of the crystallite size and microstructures. Scientific Reports 11 (1):22422. doi:10.1038/s41598-021-01916-w.
  • Fadhil A. B., H. N. Saeed and L. I. Saeed. 2021. Polyethylene terephthalate waste‐derived activated carbon for adsorptive desulfurization of dibenzothiophene from model gasoline: Kinetics and isotherms evaluation. Asia‐Pac J Chem Eng 16 (2). doi:10.1002/apj.2594.
  • Ge, T., Ch. Ch. Cai, F. F Min, M. X. Zhang. 2021. Effects of temperature and frequency on the dielectric properties of thiophene compounds and its application in coal microwave-assisted desulfurization. Fuel 301:121089. doi:10.1016/j.fuel.2021.121089.
  • Gill-Olivas, B., J. Telling, M. Tranter, M. Skidmore, B. Christner, S. O’doherty, and J. Priscu. 2021. Subglacial erosion has the potential to sustain microbial processes in Subglacial Lake Whillans, Antarctica. Communications Earth & Environment 2 (1):134. doi:10.1038/s43247-021-00202-x.
  • Hussein A. A. and A. B. Fadhil. 2021. Kinetics and isothermal evaluations of adsorptive desulfurization of dibenzothiophene over mixed bio-wastes derived activated carbon. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–20. doi:10.1080/15567036.2021.1895372.
  • Hu, T., Y. Yang, M. Zhang, Y. Gao, Q. Cheng, and H. Ji. 2019. Biodesulfurization of coal using Rhodococcus erythropolis SX-12 and Acidithiobacillus ferrooxidans GF: A two-step approach. Energy Science & Engineering 7 (1):162–69. doi:10.1002/ese3.266.
  • Javadi Nooshabadi A. and K. Hanumantha Rao. 2014. Formation of hydrogen peroxide by galena and its influence on flotation. Advanced Powder Technology 25 (3):832–839. doi:10.1016/j.apt.2013.12.008.
  • Javadi Nooshabadi, A., A. C. Larsson, and H. R. Kota. 2013. Formation of hydrogen peroxide by pyrite and its influence on flotation. Minerals Engineering 49:128–34. doi:10.1016/j.mineng.2013.05.016.
  • Kalegowda, Y., Y. -L. Chan, D. -H. Wei, and S. L. Harmer. 2015. X-PEEM, XPS and ToF-SIMS characterisation of xanthate induced chalcopyrite flotation: Effect of pulp potential. Surface Science 635:70–77. doi:10.1016/j.susc.2014.12.012.
  • Ken, B. S., and B. K. Nandi. 2019. Desulfurization of high sulfur Indian coal by oil agglomeration using Linseed oil. Powder Technology 342:690–97. doi:10.1016/j.powtec.2018.10.045.
  • Ken B. Singh, S. Aich, V. K. Saxena and B. Kumar Nandi. 2018. Combustion behavior of KOH desulphurized coals assessed by TGA-DTG. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40 (20):2458–2466. doi:10.1080/15567036.2018.1502844.
  • Kumar A., A. Lata LataSingh, R. Kumar, P. K. Rajak and P. K. Singh. 2022. Desulphurization of Dibenzothiophene by Different Bacterial Strains: An Eco-Friendly Approach to Obtain Clean Fuel from Coal. Geomicrobiology Journal 39 (6):477–486. doi:10.1080/01490451.2022.2035020.
  • Li, Y. Q., J. H. Chen, Y. Chen, C. H. Zhao, Y. B. Zhang, B. L. Ke. 2018. Interactions of oxygen and water molecules with pyrite surface: A new insight. Langmuir 34 (5):1941–52. doi:10.1021/acs.langmuir.7b04112.
  • Lim X. Bin and W. Ong. 2021. A current overview of the oxidative desulfurization of fuels utilizing heat and solar light: from materials design to catalysis for clean energy. Nanoscale Horiz. 6 (8):588–633. doi:10.1039/D1NH00127B.
  • Lin S., C. Wang, R. Liu, W. Sun and G. Jing. 2022. Surface characterization of molybdenite, bismuthinite, and pyrite to identify the influence of pH on the mineral floatability. Applied Surface Science 577: 151756. doi:10.1016/j.apsusc.2021.151756.
  • Liu, F., Y. Lei, J. Shi, L. Zhou, Z. Wu, Y. Dong, and W. Bi. 2020. Effect of microbial nutrients supply on coal bio-desulfurization. Journal of Hazardous Materials 384:121324. doi:10.1016/j.jhazmat.2019.121324.
  • Liu, J., Z. Wang, Z. Qiao, W. Chen, L. Zheng, and J. Zhou. 2020. Evaluation on the microwave-assisted chemical desulfurization for organic sulfur removal. Journal of Cleaner Production 267:121878. doi:10.1016/j.jclepro.2020.121878.
  • Liu J., X. Yang, Y. Jiang, H. Zhang, X. Jiang and X. Jiang. 2020. Chemical Properties of Superfine Pulverized Coal Particles. Part 4. Sulfur Speciation by X-ray Absorption Near-Edge Structure Spectroscopy. Energy Fuels 34 (11):13686–13697. doi:10.1021/acs.energyfuels.0c02432.
  • Li J., Z. Li, Y. Yang, C. Wang and L. Sun. 2018. Experimental study on the effect of mechanochemistry on coal spontaneous combustion. Powder Technology 339: 102–110. doi:10.1016/j.powtec.2018.08.006.
  • Luo L., H. Zhang, A. Jiao, Y. Jiang, J. Liu, X. Jiang and F. Tian. 2019. Study on the formation and dissipation mechanism of gas phase products during rapid pyrolysis of superfine pulverized coal in entrained flow reactor. Energy 173: 985–994. doi:10.1016/j.energy.2019.02.128.
  • Ma A., S. Zhao, H. Luo, Z. Sun, X. Xie, Y. Liao, X. Liang and H. Li. 2022. Mercury removal from coal-fired flue gas of high-sulfur petroleum coke activated by pyrolysis and mechanochemical method. Chemical Engineering Journal 429: 132154. doi:10.1016/j.cej.2021.132154.
  • Ma, F., Y. Tao, Y. Xian, and M. Zhang. 2020. Effects of pulverized coal modification on rotary triboelectric separation. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2020:1–13. doi:10.1080/15567036.2020.1772908.
  • O’neill, R. T., and R. Boulatov. 2021. The many flavours of mechanochemistry and its plausible conceptual underpinnings. Nature Reviews Chemistry 5 (3):148–67. doi:10.1038/s41570-020-00249-y.
  • Rout P. G., A. K. Mohanty, N. Pradhan, S. K. Biswal and S. K. Behera. 2022. Study on the Reaction Mechanism of Oxidative Microbial Desulfurization of Organic Sulfur-Rich Coal. Geomicrobiology Journal 39 (3–5):210–218. doi:10.1080/01490451.2021.1967523.
  • Saeed, S., I. Sadiq, S. Hussain, M. Idrees, F. Sadiq, S. Riaz, and S. Naseem. 2020. La3+-substituted β-ferrite: Investigation of structural, dielectric, FTIR and electrical polarization properties. Journal of Alloys and Compounds 831:154854. doi:10.1016/j.jallcom.2020.154854.
  • Sahinoglu E. 2018. Cleaning of high pyritic sulfur fine coal via flotation. Advanced Powder Technology 29 (7):1703–1712. doi:10.1016/j.apt.2018.04.005.
  • Shashanka, R., O. Uzun, and D. Chaira. 2020. Synthesis of nano-structured duplex and ferritic stainless steel powders by dry milling and its comparison with wet milling. Archives of Metallurgy and Materials 65 (1):5–14. doi:10.24425/amm.2019.131091.
  • Singh, A. K., A. Kumar, P. K. Singh, A. L. Singh, A. Kumar. 2018. Bacterial desulphurization of low-rank coal: A case study of eocene lignite of Western Rajasthan, India. Energ. Source. Part A 40 (10):1199–208. doi:10.1080/15567036.2018.1476608.
  • Sriramoju, S. K., D. Kumar, S. Majumdar, P. S. Dash, D. Shee, and R. Banerjee. 2021. Sustainability of coal mines: Separation of clean coal from the fine-coal rejects by ultra-fine grinding and density-gradient-centrifugation. Powder Technology 383:356–70. doi:10.1016/j.powtec.2021.01.061.
  • Takacs, L. 2013. The historical development of mechanochemistry. Chemical Society Reviews 42 (18):7649–59. doi:10.1039/C2CS35442J.
  • Tang, L., H. Fan, S. Chen, X. Tao, H. He, and X. Zhu. 2020. Investigation on the synergistic mechanism of coal desulfurization by ultrasonic with microwave. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 42 (20):2516–25. doi:10.1080/15567036.2019.1607950.
  • Tang, L. F., K. Y. Long, S. J. Chen, D. J. Gui, Ch. Y. He, J. Ch. Li., X. X. Tao. 2020. Removal of thiophene sulfur model compound for coal by microwave with peroxyacetic acid. Fuel 272:117748. doi:10.1016/j.fuel.2020.117748.
  • Tang L., S. Chen, S. Wang, X. Tao, H. He, L. Feng, L. Zheng, C. Ma and Y. Zhao. 2018. Exploration on the action mechanism of microwave with peroxyacetic acid in the process of coal desulfurization. Fuel 214: 554–560. doi:10.1016/j.fuel.2017.10.087.
  • Tanimu A. and K. Alhooshani. 2019. Advanced Hydrodesulfurization Catalysts: A Review of Design and Synthesis. Energy Fuels, 33 (4):2810–2838. doi:10.1021/acs.energyfuels.9b00354.
  • Tu Z., J. Wan, C. Guo, C. Fan, T. Zhang, G. Lu, J. R. Reinfelder and Z. Dang. 2017. Electrochemical oxidation of pyrite in pH 2 electrolyte. Electrochimica Acta, 239: 25–35. doi:10.1016/j.electacta.2017.04.049.
  • Wang J., G. Guo, Y. Han, Q. Hou, M. Geng and Z. Zhang. 2019. Mechanolysis mechanisms of the fused aromatic rings of anthracite coal under shear stress. Fuel, 253: 1247–1255. doi:10.1016/j.fuel.2019.05.117.
  • Wang, L., G. Jin, and Y. Xu. 2019. Desulfurization of coal using four ionic liquids with [HSO4]−. Fuel 236:1181–90. doi:10.1016/j.fuel.2018.09.082.
  • Xu, J., X. Liu, C. Song, Z. Du, F. Wang, J. Luo, X. Chen, and A. Zhou. 2020. Biodesulfurization of high sulfur coal from Shanxi: Optimization of the desulfurization parameters of three kinds of bacteria. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 42 (18):2297–315. doi:10.1080/15567036.2019.1675821.
  • Yang, X., Liu, J., Zhong, X., Jiang, Y. and Jiang, X 2021. Synergistic mechanisms of mechanochemical activation on the mild oxidative desulfurization of superfine pulverized coal. Fuel 303:121253. doi:10.1016/j.fuel.2021.121253.
  • Ye J., S. Wang, P. Zhang, M. Nabi, X. Tao, H. Zhang and Y. Liu. 2020. L-cysteine addition enhances microbial surface oxidation of coal inorganic sulfur: Complexation of cysteine and pyrite, inhibition of jarosite formation, environmental effects. Environmental Research, 187: 109705. doi:10.1016/j.envres.2020.109705.
  • Younis S. A., S. F. Mahmood, S. Y. Ibraheam and A. B. Fadhil. 2022. Preparation, characterization, and desulfurization performance of the activated carbon prepared from mixed agro-wastes: an isothermal and kinetic study. International Journal of Environmental Analytical Chemistry, 1–26. doi:10.1080/03067319.2022.2140414.
  • Yuan Q., Y. Zhang, T. Wang, J. Wang and C. E. Romero. 2021. Mechanochemical stabilization of heavy metals in fly ash from coal-fired power plants via dry milling and wet milling. Waste Management 135: 428–436. doi:10.1016/j.wasman.2021.09.029.
  • Yue J., M. Li, N. Ding, S. Cheng and C. Gao. 2022. Effect of oxalic acid and sodium hydroxide on the desulfurization of coal using UV–H 2 O 2 oxidation system. Journal of Sulfur Chemistry 43 (1): 37–52. doi:10.1080/17415993.2021.1970166.
  • Zhang Z., G. Yan, G. Zhu, P. Zhao, Z. Ma and B. Zhang. 2020. Using microwave pretreatment to improve the high-gradient magnetic-separation desulfurization of pulverized coal before combustion. Fuel, 274: 117826. doi:10.1016/j.fuel.2020.117826.
  • Zhang, L., Li, Z., Yang, Y., Zhou, Y., Kong, B., Li, J. and Si, L. 2016. Effect of acid treatment on the characteristics and structures of high-sulfur bituminous coal. Fuel 184:418–29. doi:10.1016/j.fuel.2016.07.002.
  • Zhang, B., Z. Ma, G. Zhu, G. Yan, and C. Zhou. 2018. Clean coal desulfurization pretreatment: microwave magnetic separation, response surface, and pyrite magnetic strengthen. Energy & Fuels 32 (2):1498–505. doi:10.1021/acs.energyfuels.7b03561.
  • Zhang X., Y. Tao and F. Ma. 2023. Study on deashing and desulphurization of coal with heavy medium in enhanced gravity field. International Journal of Coal Preparation and Utilization, 43 (3): 502–519. doi:10.1080/19392699.2022.2059660.
  • Zhang X., Y. Qin, J. Jin, Y. Li and P. Gao. 2022. High-efficiency and energy-conservation grinding technology using a special ceramic-medium stirred mill: A pilot-scale study. Powder Technology, 396: 354–365. doi:10.1016/j.powtec.2021.10.056.
  • Zhang, T., Zhang, J., Wang, Z., Liu, J., Qian, G., Wang, D. and Gong, X. 2021. Review of electrochemical oxidation desulfurization for fuels and minerals. Fuel 305:121562. doi:10.1016/j.fuel.2021.121562.
  • Zhu Z., H. HRen, L. LWei, X. XZhang, J. Cao, J. Zhu, Y. Liu and H. Bai. 2022. Qualitative and Quantitative Analyses of Ultrafine Anthracite by Fourier Transform Infrared Spectroscopy after Mechanochemical Preparation. J Appl Spectrosc 88 (6): 1237–1246. doi:10.1007/s10812-022-01305-9.
  • Zubrik A., Ľ. Turčániová, V. Ježová, S. SČuvanová and M. Skybová. 2007. Effect of the mechanochemical activation for the extraction of diterpenes from the brown coal. Journal of Alloys and Compounds 434–435: 837–841. doi:10.1016/j.jallcom.2006.08.299.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.