112
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Experimental and numerical performance assessment of a hybrid parabolic dish collector with photovoltaic for a distiller

ORCID Icon
Pages 3994-4016 | Received 30 Dec 2022, Accepted 04 Apr 2023, Published online: 13 Apr 2023

References

  • Abid, M., M. S. Khan, T. A. H. Ratlamwala, and K. P. Amber. 2020. Thermo-environmental investigation of solar parabolic dish-assisted multi-generation plant using different working fluids. International Journal of Energy Research 44 (15):12376–94. doi:10.1002/er.5340.
  • Alic, E., M. Das, and E. K. Akpinar. 2021. Design, manufacturing, numerical analysis and environmental effects of single-pass forced convection solar air collector. Journal of Cleaner Production 311 (August):127518. doi:10.1016/j.jclepro.2021.127518.
  • Arunkumar, T., D. Denkenberger, A. Ahsan, and R. Jayaprakash. 2013. The augmentation of distillate yield by using concentrator coupled solar still with phase change material. Desalination 314:189–92. doi:10.1016/j.desal.2013.01.018.
  • Bahrami, M., V. Madadi Avargani, and M. Bonyadi. 2019a. Comprehensive experimental and theoretical study of a novel still coupled to a solar dish concentrator. Applied Thermal Engineering 151 (February):77–89. doi:10.1016/j.applthermaleng.2019.01.103.
  • Bahrami, M., V. Madadi Avargani, and M. Bonyadi. 2019b. Comprehensive experimental and theoretical study of a novel still coupled to a solar dish concentrator. Applied Thermal Engineering 151 (January):77–89. doi:10.1016/j.applthermaleng.2019.01.103.
  • Banks, E. W., P. G. Cook, M. Owor, J. Okullo, S. Kebede, D. Nedaw, P. Mleta, H. Fallas, D. Gooddy, D. John MacAllister, et al. 2021. Environmental tracers to evaluate groundwater residence times and water quality risk in shallow unconfined aquifers in sub Saharan Africa. Journal of Hydrology 598 (June 2020):125753. doi:10.1016/j.jhydrol.2020.125753.
  • Bellos, E., C. Tzivanidis, K. A. Antonopoulos, and I. Daniil. 2016. The use of gas working fluids in parabolic trough collectors – an energetic and exergetic analysis. Applied Thermal Engineering 109:1–14. doi:10.1016/j.applthermaleng.2016.08.043.
  • Bellos, E., C. Tzivanidis, and K. Torosian. 2018. Energetic, exergetic and financial evaluation of a solar driven trigeneration system. Thermal Science and Engineering Progress 7 (March):99–106. doi:10.1016/j.tsep.2018.06.001.
  • Chaichan, M. T., and H. A. Kazem. 2015. Water solar distiller productivity enhancement using concentrating solar water heater and phase change material (PCM). Case Studies in Thermal Engineering 5:151–59. doi:10.1016/j.csite.2015.03.009.
  • Chan, W., Z. Wang, C. Yang, T. Yuan, and R. Tian. 2022. Optimization of concentration performance at focal plane considering mirror refraction in parabolic trough concentrator. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44 (2):3692–707. doi:10.1080/15567036.2022.2070687.
  • Corona, B., and G. San Miguel. 2015. Environmental analysis of a Concentrated Solar Power (CSP) plant hybridised with different fossil and renewable fuels. Fuel 145:63–69. doi:10.1016/j.fuel.2014.12.068.
  • Cutillas, C. G., J. Ruiz, F. Asfand, K. Patchigolla, and M. Lucas. 2021. Energetic, exergetic and environmental (3E) analyses of different cooling technologies (wet, dry and hybrid) in a CSP thermal power plant. Case Studies in Thermal Engineering 28 (July):101545. doi:10.1016/j.csite.2021.101545.
  • Dincer, I., and M. A. Rosen. 2012. Exergy: Energy, environment and sustainable development. USA: Newnes.
  • Duffie, J. A., W. A. Beckman, and J. McGowan. 2013. Solar engineering of thermal processes. USA: In John Wiley & Sons.
  • Ehtiwesh, I. A. S., M. C. Coelho, and A. C. M. Sousa. 2016. Exergetic and environmental life cycle assessment analysis of concentrated solar power plants. Renewable and Sustainable Energy Reviews 56:145–55. doi:10.1016/j.rser.2015.11.066.
  • Elbar, A. R. A., M. S. Yousef, and H. Hassan. 2019. Energy, exergy, exergoeconomic and enviroeconomic (4E) evaluation of a new integration of solar still with photovoltaic panel. Journal of Cleaner Production 233:665–80. doi:10.1016/j.jclepro.2019.06.111.
  • Evin, D., and A. Uçar. 2019. Investigation of the temperature distribution of a small solar chimney. European Journal of Science and Technology 17:109–16. doi:10.31590/ejosat.582533.
  • Farshad, S. A., and M. Sheikholeslami. 2019. Simulation of nanoparticles second law treatment inside a solar collector considering turbulent flow. Physica A: Statistical Mechanics and Its Applications 525:1–12. doi:10.1016/j.physa.2019.03.089.
  • Fluent, A. 2013. ANSYS fluent theory guide 15.0. USA: Canonsburg, PA. ( ANSYS)
  • García-Menéndez, D., J. C. Ríos-Fernández, A. M. Blanco-Marigorta, and M. J. Suárez-López. 2022. Dynamic simulation and exergetic analysis of a solar thermal collector installation. Alexandria Engineering Journal 61 (2):1665–77. doi:10.1016/j.aej.2021.06.075.
  • Giri, S. 2021. Water quality prospective in Twenty First Century: Status of water quality in major river basins, contemporary strategies and impediments: A review. Environmental Pollution 271:116332. doi:10.1016/j.envpol.2020.116332.
  • Hassan, H. S., M. Yousef, and S. Abo-Elfadl. 2021. Energy, exergy, economic and environmental assessment of double pass V-corrugated-perforated finned solar air heater at different air mass ratios. Sustainable Energy Technologies and Assessments 43 (December 2020):100936. doi:10.1016/j.seta.2020.100936.
  • He, W. F., D. Han, and C. Ji. 2018. Investigation on humidification dehumidification desalination system coupled with heat pump. Desalination 436 (29):152–60. doi:10.1016/j.desal.2018.02.021.
  • Hoang, A. T., T. H. Le, T. Chitsomboon, and A. Koonsrisook. 2021. Experimental investigation of solar energy-based water distillation using inclined metal tubes as collector and condenser. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 00 (00):1–17. doi:10.1080/15567036.2021.1966139.
  • Hohne, P. A., K. Kusakana, and B. P. Numbi. 2019. A review of water heating technologies: An application to the South African context. Energy Reports 5:1–19. doi:10.1016/j.egyr.2018.10.013.
  • Holman, J. P. 2001. Experimental Methods for Engineers, 48–143. 7th ed. New York: McGraw-Hill.
  • Javidmehr, M., F. Joda, and A. Mohammadi. 2018. Thermodynamic and economic analyses and optimization of a multi-generation system composed by a compressed air storage, solar dish collector, micro gas turbine, organic Rankine cycle, and desalination system. Energy Conversion and Management 168 (May):467–81. doi:10.1016/j.enconman.2018.05.019.
  • Kabeel, A. E., M. M. Khairat Dawood, K. Ramzy, T. Nabil, B. Elnaghi, and A. Elkassar. 2019. Enhancement of single solar still integrated with solar dishes: An experimental approach. Energy Conversion and Management 196 (May):165–74. doi:10.1016/j.enconman.2019.05.112.
  • Kalogirou, S. A., S. Karellas, V. Badescu, and K. Braimakis. 2016. Exergy analysis on solar thermal systems: A better understanding of their sustainability. Renewable Energy 85:1328–33. doi:10.1016/j.renene.2015.05.037.
  • Kavak Akpinar, E. 2019. The effects of some exergetic indicators on the performance of thin layer drying process of long green pepper in a solar dryer. Heat and Mass Transfer/Waerme- und Stoffuebertragung 55 (2):299–308. doi:10.1007/s00231-018-2415-2.
  • Khan, M. S., M. Abid, H. M. Ali, K. P. Amber, M. A. Bashir, and S. Javed. 2019. Comparative performance assessment of solar dish assisted s-CO2 Brayton cycle using nanofluids. Applied Thermal Engineering 148 (October 2018):295–306. doi:10.1016/j.applthermaleng.2018.11.021.
  • Kumar, A., M. Sharma, P. Thakur, V. K. Thakur, S. S. Rahatekar, and R. Kumar. 2020. A review on exergy analysis of solar parabolic collectors. Solar Energy 197 (November 2019):411–32. doi:10.1016/j.solener.2020.01.025.
  • Le Roux, W. G., and J. P. Meyer (2016). Modeling the small-scale dish-mounted solar thermal Brayton cycle. In AIP Conference Proceedings (Vol. 1734). 10.1063/1.4949144
  • Li, J., S. Wei, Y. Dong, X. Liu, and V. Novakovic. 2023. Technical and economic performance study on winter heating system of air source heat pump assisted solar evacuated tube water heater. Applied Thermal Engineering 221 (November 2022):119851. doi:10.1016/j.applthermaleng.2022.119851.
  • Loni, R., E. A. Asli-Ardeh, B. Ghobadian, A. B. Kasaeian, and E. Bellos. 2018. Energy and exergy investigation of alumina/oil and silica/oil nanofluids in hemispherical cavity receiver: Experimental Study. Energy 164:275–87. doi:10.1016/j.energy.2018.08.174.
  • Loni, R., S. Pavlovic, E. Bellos, C. Tzivanidis, and E. A. Asli-Ardeh. 2018. Thermal and exergy performance of a nanofluid-based solar dish collector with spiral cavity receiver. Applied Thermal Engineering 135 (January):206–17. doi:10.1016/j.applthermaleng.2018.02.070.
  • Madadi Avargani, V., A. Rahimi, M. Divband, and M. A. Zamani. 2020. Optical analysis and heat transfer modeling of a helically baffled cavity receiver under solar flux non-uniformity and windy conditions. Thermal Science and Engineering Progress 20 (February):100719. doi:10.1016/j.tsep.2020.100719.
  • Manchanda, H., and M. Kumar. 2018. Study of water desalination techniques and a review on active solar distillation methods. Environmental Progress & Sustainable Energy 37 (1):444–64. doi:10.1002/ep.12657.
  • Martinez, A., and G. Iglesias. 2022. Mapping of the levelised cost of energy for floating offshore wind in the European Atlantic. Renewable and Sustainable Energy Reviews 154 (November 2021):111889. doi:10.1016/j.rser.2021.111889.
  • Ma, K., Z. Wang, X. Li, P. Wu, and S. Li. 2021. Structural optimization of collector/evaporator of direct-expansion solar/air-assisted heat pump. Alexandria Engineering Journal 60 (1):387–92. doi:10.1016/j.aej.2020.08.039.
  • Mohamed, A. S. A., M. S. Ahmed, H. M. Maghrabie, and A. G. Shahdy. 2021. Desalination process using humidification–dehumidification technique: A detailed review. International Journal of Energy Research 45 (3):3698–749. doi:10.1002/er.6111.
  • Mohammadpour, M., E. Houshfar, and M. Ashjaee. 2022. Performance evaluation and multi-objective optimization of an innovative solar-assisted multigeneration energy storage system for freshwater/O2/H2 generation. Sustainable Energy Technologies and Assessments 53 (PD):102755. doi:10.1016/j.seta.2022.102755.
  • Murugan, M., A. Saravanan, P. V. Elumalai, P. Kumar, C. Ahamed Saleel, O. D. Samuel, M. Setiyo, C. C. Enweremadu, and A. Afzal. 2022. An overview on energy and exergy analysis of solar thermal collectors with passive performance enhancers. Alexandria Engineering Journal 61 (10):8123–47. doi:10.1016/j.aej.2022.01.052.
  • Nabat, M. H., M. Soltani, A. R. Razmi, J. Nathwani, and M. B. Dusseault. 2021. Investigation of a green energy storage system based on liquid air energy storage (LAES) and high-temperature concentrated solar power (CSP): Energy, exergy, economic, and environmental (4E) assessments, along with a case study for San Diego, US. Sustainable Cities and Society 75 (August):103305. doi:10.1016/j.scs.2021.103305.
  • Nimvari, M. E., N. F. Jouybari, and Q. Esmaili. 2018. A new approach to mitigate intense temperature gradients in ceramic foam solar receivers. Renewable Energy 122:206–15. doi:10.1016/j.renene.2018.01.117.
  • Omara, Z. M., and M. A. Eltawil. 2013. Hybrid of solar dish concentrator, new boiler and simple solar collector for brackish water desalination. Desalination 326:62–68. doi:10.1016/j.desal.2013.07.019.
  • Özcan, A., A. G. Devecioğlu, and V. Oruç. 2022. Experimental and numerical analysis of a parabolic trough solar collector for water heating application. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44 (2):4184–203. doi:10.1080/15567036.2021.1924317.
  • Pavlovic, S., E. Bellos, W. G. Le Roux, V. Stefanovic, and C. Tzivanidis. 2017. Experimental investigation and parametric analysis of a solar thermal dish collector with spiral absorber. Applied Thermal Engineering 121:126–35. doi:10.1016/j.applthermaleng.2017.04.068.
  • Pavlović, S. R., E. Bellos, V. P. Stefanović, C. Tzivanidis, and Z. M. Stamenković. 2016. Design, simulation, and optimization of a solar dish collector with spiral-coil thermal absorber. Thermal Science 20 (4):1387–97. doi:10.2298/TSCI160213104P.
  • Petela, R., N. Enteria, and A. Akbarzadeh. 2013. Exergy analysis of solar radiation. In (Chapter 2) Solar Thermal Sciences and Engineering Applications, ed. N. Enteria and A. Akbarzadeh, CRC Press, Taylor & Francis Group.
  • Prado, G. O., L. G. M. Vieira, and J. J. R. Damasceno. 2016. Solar dish concentrator for desalting water. Solar Energy 136:659–67. doi:10.1016/j.solener.2016.07.039.
  • Qasem, N. A. A., and S. M. Zubair. 2019. Performance evaluation of a novel hybrid humidification-dehumidification (air-heated) system with an adsorption desalination system. Desalination 461 (April):37–54. doi:10.1016/j.desal.2019.03.011.
  • Rabie, M., A. Y. M. Ali, E. M. Abo-Zahhad, H. I. Elqady, M. F. Elkady, S. Ookawara, A. H. El-Shazly, M. S. Salem, and A. Radwan. 2021. Thermal analysis of a hybrid high concentrator photovoltaic/membrane distillation system for isolated coastal regions. Solar Energy 215 (January):220–39. doi:10.1016/j.solener.2020.12.029.
  • Rafiei, A., R. Loni, S. B. Mahadzir, G. Najafi, S. Pavlovic, and E. Bellos. 2020. Solar desalination system with a focal point concentrator using different nanofluids. Applied Thermal Engineering 174 (December 2019):115058. doi:10.1016/j.applthermaleng.2020.115058.
  • Sahu, S. K., A. S. K, and S. K. Natarajan. 2021. Impact of double trumpet-shaped secondary reflector on flat receiver of a solar parabolic dish collector system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 00 (00):1–19. doi:10.1080/15567036.2021.1918803.
  • Said, Z., M. Ghodbane, A. K. Tiwari, H. M. Ali, B. Boumeddane, and Z. M. Ali. 2021. 4E (Energy, Exergy, Economic, and Environment) examination of a small LFR solar water heater: An experimental and numerical study. Case Studies in Thermal Engineering 27 (June 2020):101277. doi:10.1016/j.csite.2021.101277.
  • Saxena, A., and S. Tangellapalli. 2022. Performance analysis of solar-powered integrated desalination and air conditioning system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44 (3):6281–302. doi:10.1080/15567036.2022.2097338.
  • Sharon, H., and K. S. Reddy. 2015. Performance investigation and enviro-economic analysis of active vertical solar distillation units. Energy 84:794–807. doi:10.1016/j.energy.2015.03.045.
  • Si-Quan, Z., L. Xin-Feng, D. Liu, and M. Qing-Song. 2019. A numerical study on optical and thermodynamic characteristics of a spherical cavity receiver. Applied Thermal Engineering 149:11–21. doi:10.1016/j.applthermaleng.2018.10.030.
  • Soltani, S., M. Bonyadi, and V. Madadi Avargani. 2019. A novel optical-thermal modeling of a parabolic dish collector with a helically baffled cylindrical cavity receiver. Energy 168:88–98. doi:10.1016/j.energy.2018.11.097.
  • Song, Z., J. Ji, J. Cai, B. Zhao, and Z. Li. 2021. Investigation on a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/photovoltaic/fin evaporator. Applied Energy 299 (March):117279. doi:10.1016/j.apenergy.2021.117279.
  • Srithar, K., T. Rajaseenivasan, N. Karthik, M. Periyannan, and M. Gowtham. 2016. Stand alone triple basin solar desalination system with cover cooling and parabolic dish concentrator. Renewable Energy 90:157–65. doi:10.1016/j.renene.2015.12.063.
  • Stefanovic, V. P., S. R. Pavlovic, E. Bellos, and C. Tzivanidis. 2018. A detailed parametric analysis of a solar dish collector. Sustainable Energy Technologies and Assessments 25 (August 2017):99–110. doi:10.1016/j.seta.2017.12.005.
  • Tiwari, S., and G. N. Tiwari. 2016. Exergoeconomic analysis of photovoltaic-thermal (PVT) mixed mode greenhouse solar dryer. Energy 114:155–64. doi:10.1016/j.energy.2016.07.132.
  • Uzair, M., and N. Ur Rehman. 2022. Optical concentration ratio of a parabolic trough collector with flat receiver and concentrator with surface irregularities. Forschung Im Ingenieurwesen/Engineering Research 86 (4):903–11. doi:10.1007/s10010-022-00603-0.
  • Yilmaz, S., H. R. Ozcalik, and F. Dincer. 2015. The analysis on the impact of the roof angle on electricity energy generation of photovoltaic panels in Kahramanmaras, Turkey—A case study for all seasons. Journal of Renewable and Sustainable Energy 7 (2):023133. doi:10.1063/1.4919085.
  • Zhang, F., S. Xu, D. Feng, S. Chen, R. Du, C. Su, and B. Shen. 2017. A low-temperature multi-effect desalination system powered by the cooling water of a diesel engine. Desalination 404:112–20. doi:10.1016/j.desal.2016.11.006.
  • Zisopoulos, F. K., F. J. Rossier-Miranda, A. J. van der Goot, and R. M. Boom. 2017. The use of exergetic indicators in the food industry – a review. Critical Reviews in Food Science and Nutrition 57 (1):197–211. doi:10.1080/10408398.2014.975335.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.