210
Views
3
CrossRef citations to date
0
Altmetric
Review

Recent advances in the shape and configuration of photovoltaic thermal absorbers

, , ORCID Icon, ORCID Icon &
Pages 4211-4241 | Received 17 Oct 2022, Accepted 22 Jan 2023, Published online: 18 Apr 2023

References

  • Abdallah, S. R., H. Saidani-Scott, and O. E. Abdellatif. 2019. Performance analysis for hybrid PV/T system using low concentration MWCNT (water-based) nanofluid. Solar Energy 181:108–15. doi:10.1016/j.solener.2019.01.088.
  • Abdelrazik, A. S., F. A. Al-Sulaiman, R. Saidur, and R. Ben-Mansour. 2018. A review on recent development for the design and packaging of hybrid photovoltaic/thermal (PV/T) solar systems. Renewable and Sustainable Energy Reviews 95:110–29. doi:10.1016/j.rser.2018.07.013.
  • Abdul-Ganiyu, S., D. A. Quansah, E. W. Ramde, R. Seidu, and M. S. Adaramola. 2021a. Study effect of flow rate on flat-plate water-based photovoltaic-thermal (PVT) system performance by analytical technique. Journal of Cleaner Production 321:128985. doi:10.1016/j.jclepro.2021.128985.
  • Abdul-Ganiyu, S., D. A. Quansah, E. W. Ramde, R. Seidu, and M. S. Adaramola. 2021b. Techno-economic analysis of solar photovoltaic (PV) and solar photovoltaic thermal (PVT) systems using exergy analysis. Sustainable Energy Technologies and Assessments 47:101520. doi:10.1016/j.seta.2021.101520.
  • Al-Amri, F., T. S. Maatallah, O. F. Al-Amri, S. Ali, S. Ali, I. S. Ateeq, R. Zachariah, and T. S. Kayed. 2022. Innovative technique for achieving uniform temperatures across solar panels using heat pipes and liquid immersion cooling in the harsh climate in the Kingdom of Saudi Arabia. Alexandria Engineering Journal 61 (2):1413–24. doi:10.1016/j.aej.2021.06.046.
  • Al Ezzi, A., M. T. Chaichan, H. S. Majdi, A. H. Al-Waeli, H. A. Kazem, K. Sopian, M. A. Fayad, H. A. Dhahad, and T. Yusaf. 2022. Nano-iron oxide-ethylene glycol-water nanofluid based photovoltaic thermal (PV/T) system with spiral flow absorber: an energy and exergy analysis. Energies 15 (11):3870. doi:10.3390/en15113870.
  • Ali, M., H. M. Ali, W. Moazzam, and M. B. Saeed. 2015. Performance enhancement of PV cells through micro-channel cooling. WEENTECH Proceedings in Energy GCESD, Technology Park, 24:211. http://www.weentech.co.uk/.
  • Alktranee, M., M. A. Shehab, Z. Németh, P. Bencs, K. Hernadi, and T. Koós. 2022. Energy and exergy assessment of photovoltaic-thermal system using tungsten trioxide nanofluid: An experimental study. International Journal of Thermofluids 16:100228. doi:10.1016/j.ijft.2022.100228.
  • Al Tarabsheh, A., I. Etier, H. Fath, A. Ghazal, Y. Morci, M. Asad, and A. El Haj. 2016. Performance of photovoltaic cells in photovoltaic thermal (PVT) modules. IET Renewable Power Generation 10 (7):1017–23. doi:10.1049/iet-rpg.2016.0001.
  • Al-Waeli, A. H., H. A. Kazem, M. T. Chaichan, and K. Sopian. 2019. Experimental investigation of using nano-PCM/nanofluid on a photovoltaic thermal system (PVT): Technical and economic study. Thermal Science and Engineering Progress 11:213–30. doi:10.1016/j.tsep.2019.04.002.
  • Al-Waeli, A. H., K. Sopian, M. T. Chaichan, H. A. Kazem, A. Ibrahim, S. Mat, and M. H. Ruslan. 2017. Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: An experimental study. Energy Conversion and Management 151:693–708. doi:10.1016/j.enconman.2017.09.032.
  • Al-Waeli, A. H., K. Sopian, M. T. Chaichan, H. A. Kazem, S. Ibrahim, A. Mat, M. H. Ruslan, and M. H. Ruslan. 2018. Comparison of prediction methods of PV/T nanofluid and nano-PCM system using a measured dataset and artificial neural network. Solar Energy 162:378–96. doi:10.1016/j.solener.2018.01.026.
  • Anandaraj, S., M. Ayyasamy, F. P. G. Marquez, and M. M. Athikesavan. 2022. Experimental studies of different operating parameters on the photovoltaic thermal system using a flattened geometrical structure. Environmental Science and Pollution Research 30 (1):1–17. doi:10.1007/s11356-022-22261-z.
  • Anderson, W. G., P. M. Dussinger, D. B. Sarraf, and S. Tamanna. 2008. Heat pipe cooling of concentrating photovoltaic cells. In 2008 33rd IEEE Photovoltaic Specialists Conference IEEE:1–6. doi:10.1109/PVSC.2008.4922577.
  • Aneli, S., A. Gagliano, G. M. Tina, and B. Hajji. 2020. Analysis of the energy produced and energy quality of nanofluid impact on photovoltaic-thermal systems. In International Conference on Electronic Engineering and Renewable Energy Springer, Singapore:739–45. doi:10.1007/978-981-15-6259-4_77.
  • Aste, N., C. Del Pero, and F. Leonforte. 2014. Water flat plate PV–thermal collectors: A review. Solar Energy 102:98–115. doi:10.1016/j.solener.2014.01.025.
  • Atkin, P., and M. M. Farid. 2015. Improving the efficiency of photovoltaic cells using PCM infused graphite and aluminium fins. Solar Energy 114:217–28. doi:10.1016/j.solener.2015.01.037.
  • Bahaidarah, H., A. Subhan, P. Gandhidasan, and S. Rehman. 2013. Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions. Energy 59:445–53. doi:10.1016/j.energy.2013.07.050.
  • Baloch, A. A., H. M. Bahaidarah, P. Gandhidasan, and F. A. Al-Sulaiman. 2015. Experimental and numerical performance analysis of a converging channel heat exchanger for PV cooling. Energy Conversion and Management 103:14–27. doi:10.1016/j.enconman.2015.06.018.
  • Ben Cheikh El Hocine, H., K. Touafek, and F. Kerrour. 2017. Theoretical and experimental studies of a new configuration of photovoltaic–thermal collector. Journal of Solar Energy Engineering 139 (2):1–8. doi:10.1115/1.4035328.
  • Biwole, P. H., P. Eclache, and F. Kuznik. 2013. Phase-change materials to improve solar panel’s performance. Energy and Buildings 62:59–67. doi:10.1016/j.enbuild.2013.02.059.
  • Buonomano, A., F. Calise, and M. Vicidomini. 2016. Design, simulation and experimental investigation of a solar system based on PV panels and PVT collectors. Energies 9 (7):497. doi:10.3390/en9070497.
  • Carmona, M., A. P. Bastos, and J. D. García. 2021. Experimental evaluation of a hybrid photovoltaic and thermal solar energy collector with integrated phase change material (PVT-PCM) in comparison with a traditional photovoltaic (PV) module. Renewable Energy 172:680–96. doi:10.1016/j.renene.2021.03.022.
  • Chantana, J., Y. Imai, Y. Kawano, Y. Hishikawa, K. Nishioka, and T. Minemoto. 2020. Impact of average photon energy on spectral gain and loss of various-type PV technologies at different locations. Renewable Energy 145:1317–24. doi:10.1016/j.renene.2019.06.139.
  • Cristofari, C., G. Notton, and J. L. Canaletti. 2009. Thermal behavior of a copolymer PV/Th solar system in low flow rate conditions. Solar Energy 83 (8):1123–38. doi:10.1016/j.solener.2009.01.008.
  • Del Col, D., A. Padovan, M. Bortolato, M. Dai Prè, and E. Zambolin. 2013. Thermal performance of flat plate solar collectors with sheet-and-tube and roll-bond absorbers. Energy 58:258–69. doi:10.1016/j.energy.2013.05.058.
  • Dubey, S., G. S. Sandhu, and G. N. Tiwari. 2009. Analytical expression for electrical efficiency of PV/T hybrid air collector. Applied Energy 86 (5):697–705. doi:10.1016/j.apenergy.2008.09.003.
  • Dupré, O., R. Vaillon, and M. A. Green. 2017. Thermal Issues in Photovoltaics and Existing Solutions. In Thermal Behavior of Photovoltaic Devices, 1–28. Cham: Springer. doi:10.1007/978-3-319-49457-9_1.
  • Dwivedi, P., K. Sudhakar, A. Soni, E. Solomin, and I. Kirpichnikova. 2020. Advanced cooling techniques of PV modules: A state of art. Case Studies in Thermal Engineering 21:100674. doi:10.1016/j.csite.2020.100674.
  • Elarga, H., F. Goia, A. Zarrella, A. Dal Monte, and E. Benini. 2016. Thermal and electrical performance of an integrated PV-PCM system in double skin façades: A numerical study. Solar Energy 136:112–24. doi:10.1016/j.solener.2016.06.074.
  • El Chaar, L., N. El Zein, and N. El Zein. 2011. Review of photovoltaic technologies. Renewable and Sustainable Energy Reviews 15 (5):2165–75. doi:10.1016/j.rser.2011.01.004.
  • El Fouas, C., B. Hajji, A. Gagliano, G. M. Tina, and S. Aneli. 2020. Numerical model and experimental validation of the electrical and thermal performances of photovoltaic/thermal plant. Energy Conversion and Management 220:112939. doi:10.1016/j.enconman.2020.112939.
  • Emmanuel, B., Y. Yuan, J. Gaudence, N. Zhou, and J. Zhou. 2021. A review on the influence of the components on the performance of PVT modules. Solar Energy 226:365–88. doi:10.1016/j.solener.2021.08.042.
  • Fayaz, H., R. Nasrin, N. A. Rahim, and M. Hasanuzzaman. 2018. Energy and exergy analysis of the PVT system: Effect of nanofluid flow rate. Solar Energy 169:217–30. doi:10.1016/j.solener.2018.05.004.
  • Fiorentini, M., P. Cooper, and Z. Ma. 2015. Development and optimization of an innovative HVAC system with integrated PVT and PCM thermal storage for a net-zero energy retrofitted house. Energy and Buildings 94:21–32. doi:10.1016/j.enbuild.2015.02.018.
  • Fudholi, A., K. Sopian, M. H. Yazdi, M. H. Ruslan, A. Ibrahim, and H. A. Kazem. 2014. Performance analysis of photovoltaic thermal (PVT) water collectors. Energy Conversion and Management 78:641–51. doi:10.1016/j.enconman.2013.11.017.
  • Gagliano, A., and S. Aneli. 2021. Energy analysis of hybrid solar thermal plants (PV/T). Recent Advances in Renewable Energy Technologies Academic Press 45–90. doi:10.1016/B978-0-323-91093-4.00003-2.
  • Garg, H. P., and R. K. Agarwal. 1995. Some aspects of a PV/T collector/forced circulation flat plate solar water heater with solar cells. Energy Conversion and Management 36 (2):87–99. doi:10.1016/0196-8904(94)00046-3.
  • Ghadiri, M., M. Sardarabadi, M. Pasandideh-Fard, and A. J. Moghadam. 2015. Experimental investigation of a PVT system performance using nano ferrofluids. Energy Conversion and Management 103:468–76. doi:10.1016/j.enconman.2015.06.077.
  • Gotmare, J. A., D. S. Borkar, and P. R. Hatwar. 2015. Experimental investigation of PV panel with fin cooling under natural convection. International Journal of Advanced Technology in Engineering and Science 3 (2):447–54.
  • Guarracino, I., A. Mellor, N. J. Ekins-Daukes, and C. N. Markides. 2016. Dynamic coupled thermal-and-electrical modelling of sheet-and-tube hybrid photovoltaic/thermal (PVT) collectors. Applied Thermal Engineering 101:778–95. doi:10.1016/j.applthermaleng.2016.02.056.
  • Hamid, S. A., M. Y. Othman, K. Sopian, and S. H. Zaidi. 2014. An overview of photovoltaic thermal combination (PV/T combi) technology. Renewable and Sustainable Energy Reviews 38:212–22. doi:10.1016/j.rser.2014.05.083.
  • Hasan, A., S. J. McCormack, M. J. Huang, J. Sarwar, and B. Norton. 2015. Increased photovoltaic performance through temperature regulation by phase change materials: Materials comparison in different climates. Solar Energy 115:264–76. doi:10.1016/j.solener.2015.02.003.
  • Hasan, M. A., and K. Sumathy. 2010. Photovoltaic thermal module concepts and their performance analysis: A review. Renewable and Sustainable Energy Reviews 14 (7):1845–59. doi:10.1016/j.rser.2010.03.011.
  • Hassan, A., A. Wahab, M. A. Qasim, M. M. Janjua, M. A. Ali, H. M. Ali, T. R. Jadoon, E. Ali, A. Raza, and N. Javaid. 2020. Thermal management and uniform temperature regulation of photovoltaic modules using hybrid phase change materials-nanofluids system. Renewable Energy 145:282–93. doi:10.1016/j.renene.2019.05.130.
  • Herrando, M., A. M. Pantaleo, K. Wang, and C. N. Markides. 2019. Solar combined cooling, heating and power systems based on hybrid PVT, PV or solar-thermal collectors for building applications. Renewable Energy 143:637–47. doi:10.1016/j.renene.2019.05.004.
  • Hirst, L. C., and N. J. Ekins‐daukes. 2011. Fundamental losses in solar cells. Progress in Photovoltaics: Research and Applications 19 (3):286–93. doi:10.1002/pip.1024.
  • Hissouf, M., A. Najim, M. Charef, and A. Charef. 2020. Numerical study of a covered Photovoltaic-Thermal Collector (PVT) enhancement using nanofluids. Solar Energy 199:115–27. doi:10.1016/j.solener.2020.01.083.
  • Hosenuzzaman, M., N. A. Rahim, J. Selvaraj, M. Hasanuzzaman, A. A. Malek, and A. Nahar. 2015. Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renewable and Sustainable Energy Reviews 41:284–97. doi:10.1016/j.rser.2014.08.046.
  • Hossain, M. S., A. K. Pandey, J. Selvaraj, N. Abd Rahim, M. M. Islam, and V. V. Tyagi. 2019. Two side serpentine flow based photovoltaic-thermal-phase change materials (PVT-PCM) system: Energy, exergy and economic analysis. Renewable Energy 136:1320–36. doi:10.1016/j.renene.2018.10.097.
  • Hossain, M. S., A. K. Pandey, J. Selvaraj, N. Abd Rahim, A. Rivai, and V. V. Tyagi. 2019. Thermal performance analysis of parallel serpentine flow based photovoltaic/thermal (PV/T) system under composite climate of Malaysia. Applied Thermal Engineering 153:861–71. doi:10.1016/j.applthermaleng.2019.01.007.
  • Hosseinzadeh, M., M. Sardarabadi, and M. Passandideh-Fard. 2018. Energy and exergy analysis of nanofluid based photovoltaic thermal system integrated with phase change material. Energy 147:636–47. doi:10.1016/j.energy.2018.01.073.
  • Huang, M. J., P. C. Eames, B. Norton, and N. J. Hewitt. 2011. Natural convection in an internally finned phase change material heat sink for the thermal management of photovoltaics. Solar Energy Materials and Solar Cells 95 (7):1598–603. doi:10.1016/j.solmat.2011.01.008.
  • Hussain, F., M. Y. H. Othman, B. Yatim, H. Ruslan, K. Sopian, and Z. Ibarahim. 2013. A study of PV/T collector with honeycomb heat exchanger. AIP Conference Proceedings 1571 (1):10–16. doi:10.1063/1.4858622.
  • Ibrahim, A., M. Y. Othman, M. H. Ruslan, M. Alghoul, M. Yahya, A. Zaharim, and K. Sopian. 2009. Performance of photovoltaic thermal collector (PVT) with different absorbers design. Wseas Transactions on Environment and Development 5 (3):321–30.
  • Jaiganesh, K., and K. Duraiswamy. 2013. Experimental study of enhancing the performance of pv panel integrated with solar thermal system. International Journal of Engineering & Technology 5 (4):3419–26. doi:10.15866/iree.v8i4.2075.
  • Jakhar, S., M. S. Soni, and N. Gakkhar. 2017. An integrated photovoltaic thermal solar (IPVTS) system with earth water heat exchanger cooling: Energy and exergy analysis. Solar Energy 157:81–93. doi:10.1016/j.solener.2017.08.008.
  • Jidhesh, P., T. V. Arjunan, and N. Gunasekar. 2021. Thermal modeling and experimental validation of semitransparent photovoltaic-thermal hybrid collector using CuO nanofluid. Journal of Cleaner Production 316:128360. doi:10.1016/j.jclepro.2021.128360.
  • Jidhesh, P., T. V. Arjunan, N. Gunasekar, and M. Mohanraj. 2021. Experimental thermodynamic performance analysis of semi-transparent photovoltaic-thermal hybrid collectors using nanofluids. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 235 (5):1639–51. doi:10.1177/09544089211013663.
  • Jin, G. L. 2010. Evaluation of single-pass photovoltaic-thermal air collector with rectangle tunnel absorber. American Journal of Applied Sciences 7 (2):277. doi:10.3844/ajassp.2010.277.282.
  • Karami, N., and M. Rahimi. 2014. Heat transfer enhancement in a PV cell using Boehmite nanofluid. Energy Conversion and Management 86:275–85. doi:10.1016/j.enconman.2014.05.037.
  • Karim, M. A., and M. N. A. Hawlader. 2006. Performance evaluation of a v-groove solar air collector for drying applications. Applied Thermal Engineering 26 (1):121–30. doi:10.1016/j.applthermaleng.2005.03.017.
  • Karthick, A., P. Ramanan, A. Ghosh, B. Stalin, R. Vignesh Kumar, and I. Baranilingesan. 2020. Performance enhancement of copper indium diselenide photovoltaic module using inorganic phase change material. Asia‐pacific Journal of Chemical Engineering 15 (5):2480. doi:10.1002/apj.2480.
  • Kazem, H. A., M. T. Chaichan, A. H. Al-Waeli, H. Jarimi, A. Ibrahim, and K. Sopian. 2022. Effect of Temperature on the Electrical and Thermal Behaviour of a Photovoltaic/Thermal System Cooled Using SiC Nanofluid: An Experimental and Comparison Study. Sustainability 14 (19):11897. doi:10.3390/su141911897.
  • Kazemian, A., M. Hosseinzadeh, M. Sardarabadi, and M. Passandideh-Fard. 2018. Effect of glass cover and working fluid on the performance of photovoltaic thermal (PVT) system: An experimental study. Solar Energy 173:1002–10. doi:10.1016/j.solener.2018.07.051.
  • Kazemian, A., A. Taheri, A. Sardarabadi, T. Ma, M. Passandideh-Fard, and J. Peng. 2020. Energy, exergy and environmental analysis of glazed and unglazed PVT system integrated with phase change material: An experimental approach. Solar Energy 201:178–89. doi:10.1016/j.solener.2020.02.096.
  • Khanjari, Y., F. Pourfayaz, and A. B. Kasaeian. 2016. Numerical investigation on using of nanofluid in a water-cooled photovoltaic thermal system. Energy Conversion and Management 122:263–78. doi:10.1016/j.enconman.2016.05.083.
  • Khanna, S., K. S. Reddy, and T. K. Mallick. 2017. Performance analysis of tilted photovoltaic system integrated with phase change material under varying operating conditions. Energy 133:887–99. doi:10.1016/j.energy.2017.05.150.
  • Khelifa, A., K. Touafek, H. B. Moussa, and I. Tabet. 2016. Modeling and detailed study of hybrid photovoltaic thermal (PV/T) solar collector. Solar Energy 135:169–76. doi:10.1016/j.solener.2016.05.048.
  • Kim, J. H., and J. T. Kim. 2012. The experimental performance of an unglazed PVT collector with two different absorber types. International Journal of Photoenergy 2012:1–6. doi:10.1155/2012/312168.
  • Krauter, S. 2004. Increased electrical yield via water flow over the front of photovoltaic panels. Solar Energy Materials and Solar Cells 82 (1–2):131–37. doi:10.1016/j.solmat.2004.01.011.
  • Kumar, R., V. Deshmukh, and R. S. Bharj. 2020. Performance enhancement of photovoltaic modules by nanofluid cooling: A comprehensive review. International Journal of Energy Research 44 (8):6149–69. doi:10.1002/er.5285.
  • Maatallah, T., R. Zachariah, and F. G. Al-Amri. 2019. Exergo-economic analysis of a serpentine flow type water based photovoltaic thermal system with phase change material (PVT-PCM/water). Solar Energy 193:195–204. doi:10.1016/j.solener.2019.09.063.
  • Menon, G. S., S. Murali, J. Elias, D. A. Delfiya, P. V. Alfiya, and M. P. Samuel. 2022. Experimental investigations on unglazed photovoltaic-thermal (PVT) system using water and nanofluid cooling medium. Renewable Energy 188:986–96. doi:10.1016/j.renene.2022.02.080.
  • Michael, J. J., and S. Iniyan. 2015. Performance analysis of a copper sheet laminated photovoltaic thermal collector using copper oxide–water nanofluid. Solar Energy 119:439–51. doi:10.1016/j.solener.2015.06.028.
  • Misha, S., A. L. Abdullah, N. Tamaldin, M. A. M. Rosli, and F. A. Sachit. 2020. Simulation CFD and experimental investigation of PVT water system under natural Malaysian weather conditions. Energy Reports 6:28–44. doi:10.1016/j.egyr.2019.11.162.
  • Moradi, K., M. A. Ebadian, and C. X. Lin. 2013. A review of PV/T technologies: Effects of control parameters. International Journal of Heat and Mass Transfer 64:483–500. doi:10.1016/j.ijheatmasstransfer.2013.04.044.
  • Mundo-Hernández, J., B. de Celis Alonso, J. Hernández-Álvarez, and B. de Celis-Carrillo. 2014. An overview of solar photovoltaic energy in Mexico and Germany. Renewable and Sustainable Energy Reviews 31:639–49. doi:10.1016/j.rser.2013.12.029.
  • Nada, S. A., D. H. El-Nagar, and H. M. S. Hussein. 2018. Improving the thermal regulation and efficiency enhancement of PCM-Integrated PV modules using nano particles. Energy Conversion and Management 166:735–43. doi:10.1016/j.enconman.2018.04.035.
  • Nahar, A., M. Hasanuzzaman, and N. A. Rahim. 2017a. Numerical and experimental investigation on the performance of a photovoltaic thermal collector with parallel plate flow channel under different operating conditions in Malaysia. Solar Energy 144:517–28. doi:10.1016/j.solener.2017.01.041.
  • Nahar, A., M. Hasanuzzaman, and N. A. Rahim. 2017b. A three-dimensional comprehensive numerical investigation of different operating parameters on the performance of a photovoltaic thermal system with pancake collector. Journal of Solar Energy Engineering 139 (3):031009. doi:10.1115/1.4035818.
  • Najafi, H., and K. A. Woodbury. 2013. Optimization of a cooling system based on Peltier effect for photovoltaic cells. Solar Energy 91:152–60. doi:10.1016/j.solener.2013.01.026.
  • Nasrin, R., M. Hasanuzzaman, and N. A. Rahim. 2019. Effect of nanofluids on heat transfer and cooling system of the photovoltaic/thermal performance. International Journal of Numerical Methods for Heat & Fluid Flow 29 (6):1920–46. doi:10.1108/HFF-04-2018-0174.
  • Nayak, K. C., S. K. Saha, K. Srinivasan, and P. Dutta. 2006. A numerical model for heat sinks with phase change materials and thermal conductivity enhancers. International Journal of Heat and Mass Transfer 49 (11–12):1833–44. doi:10.1016/j.ijheatmasstransfer.2005.10.039.
  • Nazri, N. S., A. Fudholi, B. Bakhtyar, C. H. Yen, A. Ibrahim, M. H. Ruslan, S. Mat, and K. Sopian. 2018. Energy economic analysis of photovoltaic–thermal-thermoelectric (PVT-TE) air collectors. Renewable and Sustainable Energy Reviews 92:187–97. doi:10.1016/j.rser.2018.04.061.
  • Nkurikiyimfura, I., Y. Wang, B. Safari, and E. Nshingabigwi. 2021. Electrical and thermal performances of photovoltaic/thermal systems with magnetic nanofluids: A review. Particuology 54:181–200. doi:10.1016/j.partic.2020.04.004.
  • Othman, M. Y. H., K. Sopian, B. Yatim, and W. R. W. Daud. 2006. Development of advanced solar assisted drying systems. Renewable Energy 31 (5):703–09. doi:10.1016/j.renene.2005.09.004.
  • Poredoš, P., U. Tomc, N. Petelin, B. Vidrih, U. Flisar, and A. Kitanovski. 2020. Numerical and experimental investigation of the energy and exergy performance of solar thermal, photovoltaic and photovoltaic-thermal modules based on roll-bond heat exchangers. Energy Conversion and Management 210:112674. doi:10.1016/j.enconman.2020.112674.
  • Rao, V. T., Y. R. Sekhar, A. K. Pandey, Z. Said, D. R. Prasad, M. S. Hossain, and J. Selvaraj. 2022. Thermal analysis of hybrid photovoltaic-thermal water collector modified with latent heat thermal energy storage and two side serpentine absorber design. Journal of Energy Storage 56:105968. doi:10.1016/j.est.2022.105968.
  • Rejeb, O., M. Sardarabadi, C. Ménézo, M. Passandideh-Fard, M. H. Dhaou, and A. Jemni. 2016. Numerical and model validation of uncovered nanofluid sheet and tube type photovoltaic thermal solar system. Energy Conversion and Management 110:367–77. doi:10.1016/j.enconman.2015.11.063.
  • Said, Z., R. Saidur, N. A. Rahim, and M. A. Alim. 2014. Analyses of exergy efficiency and pumping power for a conventional flat plate solar collector using SWCNTs based nanofluid. Energy and Buildings 78:1–9. doi:10.1016/j.enbuild.2014.03.061.
  • Salem, M. R., R. K. Ali, and K. M. Elshazly. 2017. Experimental investigation of the performance of a hybrid photovoltaic/thermal solar system using aluminium cooling plate with straight and helical channels. Solar Energy 157:147–56. doi:10.1016/j.solener.2017.08.019.
  • Salem, M. R., M. M. Elsayed, A. A. Abd-Elaziz, and K. M. Elshazly. 2019. Performance enhancement of the photovoltaic cells using Al2O3/PCM mixture and/or water cooling-techniques. Renewable Energy 138:876–90. doi:10.1016/j.renene.2019.02.032.
  • Salih, S. M., O. I. Abd, and K. W. Abid. 2015. Performance enhancement of PV array based on water spraying technique. International Journal of Sustainable and Green Energy 4 (16):8–13. s.2015040301.12. doi:10.11648/j.ijrse.
  • Santbergen, R., C. C. M. Rindt, H. A. Zondag, and R. C. Van Zolingen. 2010. Detailed analysis of the energy yield of systems with covered sheet-and-tube PVT collectors. Solar Energy 84 (5):867–78. doi:10.1016/j.solener.2010.02.014.
  • Sarafraz, M. M., M. R. Safaei, A. S. Leon, I. Tlili, T. A. Alkanhal, Z. Tian, M. Goodarzi, and M. Arjomandi. 2019. Experimental investigation on thermal performance of a PV/T-PCM (photovoltaic/thermal) system cooling with a PCM and nanofluid. Energies 12 (13):2572. doi:10.3390/en12132572.
  • Sardarabadi, M., M. Hosseinzadeh, A. Kazemian, and M. Passandideh-Fard. 2017. Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints. Energy 1138:682–95. doi:10.1016/j.energy.2017.07.046.
  • Sardarabadi, M., M. Passandideh-Fard, and S. Z. Heris. 2014. Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units). Energy 66:264–72. doi:10.1016/j.energy.2014.01.102.
  • Sathe, T. M., and A. S. Dhoble. 2017. A review on recent advancements in photovoltaic thermal techniques. Renewable and Sustainable Energy Reviews 76:645–72. doi:10.1016/j.rser.2017.03.075.
  • Shen, L., Z. Li, and T. Ma. 2020. Analysis of the power loss and quantification of the energy distribution in PV module. Applied Energy 260:114333. doi:10.1016/j.apenergy.2019.114333.
  • Silveira, J. L., C. E. Tuna, and W. de Queiroz Lamas. 2013. The need of subsidy for the implementation of photovoltaic solar energy as supporting of decentralized electrical power generation in Brazil. Renewable and Sustainable Energy Reviews 20:133–41. doi:10.1016/j.rser.2012.11.054.
  • Singh, H. P., A. Jain, A. Singh, and S. Arora. 2019. Influence of absorber plate shape factor and mass flow rate on the performance of the PVT system. Applied Thermal Engineering 156:692–701. doi:10.1016/j.applthermaleng.2019.04.070.
  • Smith, C. J., P. M. Forster, and R. Crook. 2014. Global analysis of photovoltaic energy output enhanced by phase change material cooling. Applied Energy 126:21–28. doi:10.1016/j.apenergy.2014.03.083.
  • Sobhnamayan, F., F. Sarhaddi, M. A. Alavi, S. Farahat, and J. Yazdanpanahi. 2014. Optimization of a solar photovoltaic thermal (PV/T) water collector based on exergy concept. Renewable Energy 68:356–65. doi:10.1016/j.renene.2014.01.048.
  • Soliman, A. M., and H. Hassan. 2019. Effect of heat spreader size, microchannel configuration and nanoparticles on the performance of PV-heat spreader-microchannels system. Solar Energy 182:286–97. doi:10.1016/j.solener.2019.02.059.
  • Tang, X., Z. Quan, and Y. Zhao. 2010. Experimental investigation of solar panel cooling by a novel micro heat pipe array. Energy and Power Engineering 2 (3):171–74. doi:10.4236/epe.2010.23025.
  • Teo, H. G., P. S. Lee, and M. N. A. Hawlader. 2012. An active cooling system for photovoltaic modules. Applied Energy 90 (1):309–15. doi:10.1016/j.apenergy.2011.01.017.
  • Tirupati Rao, V., and Y. Raja Sekhar. 2022. Exergo-Economic and CO2 Emission Analysis of Bi-Symmetrical Web Flow Photovoltaic-Thermal System Under Diurnal Conditions. Journal of Energy Resources Technology 145 (3):032001. doi:10.1115/1.4055225.
  • Tonui, J. K., and Y. Tripanagnostopoulos. 2007. Improved PV/T solar collectors with heat extraction by forced or natural air circulation. Renewable Energy 32 (4):623–37. doi:10.1016/j.renene.2006.03.006.
  • Touafek, K., A. Khelifa, and M. Adouane. 2014. Theoretical and experimental study of sheet and tubes hybrid PVT collector. Energy Conversion and Management 80:71–77. doi:10.1016/j.enconman.2014.01.021.
  • Tyagi, P. K., and R. Kumar. 2021. Emerging Trends on the Implementation of Nanomaterials for Improving the Performance of Photovoltaic Thermal Systems: Energetic, Exergetic, Environmental, and Economic Perspectives. Energy Technology 9 (12):2100619. doi:10.1002/ente.202100619.
  • Tyagi, P. K., R. Kumar, and P. K. Mondal. 2020. A review of the state-of-the-art nanofluid spray and jet impingement cooling. Physics of Fluids 32 (12):121301. doi:10.1063/5.0033503.
  • Tyagi, P. K., R. Kumar, and Z. Said. 2022. Recent advances on the role of nanomaterials for improving the performance of photovoltaic thermal systems: Trends, challenges and prospective. Nano Energy 93:106834. doi:10.1016/j.nanoen.2021.106834.
  • Vaillon, R., O. Dupré, R. B. Cal, and M. Calaf. 2018. Pathways for mitigating thermal losses in solar photovoltaics. Scientific Reports 8 (1):1–9. doi:10.1038/s41598-018-31257-0.
  • Van Sark, W. G. J. H. M. 2011. Feasibility of photovoltaic–thermoelectric hybrid modules. Applied Energy 88 (8):2785–90. doi:10.1016/j.apenergy.2011.02.008.
  • Ventura, C., G. M. Tina, A. Gagliano, and S. Aneli. 2021. Enhanced models for the evaluation of electrical efficiency of PV/T modules. Solar Energy 224:531–44. doi:10.1016/j.solener.2021.06.018.
  • Wu, S., and C. Xiong. 2014. Passive cooling technology for photovoltaic panels for domestic houses. International Journal of Low-Carbon Technologies 9 (2):118–26. doi:10.1093/ijlct/ctu013.
  • Yahya, S. M., S. F. Anwer, and S. Sanghi. 2013. Enhanced heat transfer and fluid flow in a channel behind a photovoltaic panel in a hybrid photovoltaic/thermal system. Industrial & Engineering Chemistry Research 52 (51):18413–20. doi:10.1021/ie402460n.
  • Yang, H. X., R. H. Marshall, and B. J. Brinkworth. 1996. Validated simulation for thermal regulation of photovoltaic wall structures. In Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference:1453–56. doi:10.1109/PVSC.1996.564409.
  • Yazdanifard, F., M. Ameri, and E. Ebrahimnia-Bajestan. 2017. Performance of nanofluid-based photovoltaic/thermal systems: A review. Renewable and Sustainable Energy Reviews 76:323–52. doi:10.1016/j.rser.2017.03.025.
  • Yazdanpanahi, J., F. Sarhaddi, and M. M. Adeli. 2015. Experimental investigation of exergy efficiency of a solar photovoltaic thermal (PVT) water collector based on exergy losses. Solar Energy 118:197–208. doi:10.1016/j.solener.2015.04.038.
  • Yu, Y., H. Yang, J. Peng, and E. Long. 2019. Performance comparisons of two flat-plate photovoltaic thermal collectors with different channel configurations. Energy 175:300–08. doi:10.1016/j.energy.2019.03.054.
  • Zondag, H. A., D. W. De Vries, W. G. J. Van Helden, R. J. C. Van Zolingen, and A. A. Van Steenhoven. 2003. The yield of different combined PV-thermal collector designs. Solar Energy 74 (3):253–69. doi:10.1016/S0038-092X(03)00121-X.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.