239
Views
4
CrossRef citations to date
0
Altmetric
Review

Dust impact on the performance of solar photovoltaic module: a new prospect

Pages 4087-4106 | Received 17 Jan 2023, Accepted 28 Mar 2023, Published online: 18 Apr 2023

References

  • Alagoz, S., and Y. Apak. 2020. Removal of spoiling materials from solar panel surfaces by applying surface acoustic waves. Journal of Cleaner Production 253:119992. doi:10.1016/j.jclepro.2020.119992.
  • Alawasa, K. M., R. S. Alabri, A. S. Al-Hinai, M. H. Albadi, and A. H. Al-Badi. 2021. Experimental study on the effect of dust deposition on a car park photovoltaic system with different cleaning cycles. Sustain 13 (14):7636. doi:10.3390/su13147636.
  • Al-Badra, M. Z., M. S. Abd-Elhady, and H. A. Kandil. 2020. A novel technique for cleaning PV panels using antistatic coating with a mechanical vibrator. Energy Reports 6:1633–37. doi:10.1016/j.egyr.2020.06.020.
  • Ali Sadat, S., J. Faraji, M. Nazififard, and A. Ketabi. 2021. The experimental analysis of dust deposition effect on solar photovoltaic panels in Iran’s desert environment. Sustainable Energy Technologies and Assessments 47 (August):101542. doi:10.1016/j.seta.2021.101542.
  • Alnasser, T. M. A., A. M. J. Mahdy, K. I. Abass, M. T. Chaichan, and H. A. Kazem. 2020. Impact of dust ingredient on photovoltaic performance: An experimental study. Solar Energy 195 (November 2019):651–59. doi:10.1016/j.solener.2019.12.008.
  • Alquthami, T., and K. Menoufi. 2019. Soiling of photovoltaic modules: Comparing between two distinct locations within the framework of developing the photovoltaic soiling index (PVSI). Sustainability 11 (17):4697. doi:10.3390/su11174697.
  • Al Shehri, A., B. Parrott, P. Carrasco, H. Al Saiari, and I. Taie. 2016. Impact of dust deposition and brush-based dry cleaning on glass transmittance for PV modules applications. Solar Energy 135:317–24. doi:10.1016/j.solener.2016.06.005.
  • Al-Waeli, A. H. A., H. A. Kazem, M. T. Chaichan, and K. Sopian. 2019. Photovoltaic/Thermal (PV/T) systems: principles, design, and applications. 1st ed. Switzerland: Springer Nature.
  • Al-Waeli, A. H. A., H. A. Kazem, K. Sopian, and M. T. Chaichan. 2017. Techno-economical assessment of grid connected PV/T using nanoparticles and water as base-fluid systems in Malaysia. International Journal of Sustainable Energy 37 (6):558–75. doi:10.1080/14786451.2017.1323900.
  • Al-Waeli, A. H. A., K. Sopian, H. A. Kazem, and M. T. Chaichan. 2017. Photovoltaic/Thermal (PV/T) systems: Status and future prospects. Renewable and Sustainable Energy Reviews 77:109–30. doi:10.1016/j.rser.2017.03.126.
  • Cabanillas, R. E., and H. Munguía. 2011. Dust accumulation effect on efficiency of Si photovoltaic modules. Journal of Renewable and Sustainable Energy 3 (4):043114. doi:10.1063/1.3622609.
  • Chaichan, M. T. M. T., and H. A. H. A. H. A. Kazem. 2015. Using aluminium powder with PCM (paraffin wax) to enhance single slope solar water distiller productivity in Baghdad - Iraq winter weathers. International Journal of Renewable Energy Research 5 (1):251–57. doi:10.1163/22134468-00002006.
  • Chaichan, M. T., and H. A. Kazem. 2020. “Experimental evaluation of dust composition impact on photovoltaic performance in Iraq,”. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 00 (00):1–22. doi:10.1080/15567036.2020.1746444.
  • Conceição, R., H. G. Silva, J. Mirão, M. Gostein, L. Fialho, L. Narvarte, and M. Collares-Pereira. 2018. Saharan dust transport to Europe and its impact on photovoltaic performance: A case study of soiling in Portugal. Solar Energy 160 (September 2017):94–102. doi:10.1016/j.solener.2017.11.059.
  • Cordero, R. R., A. Damiani, D. Laroze, S. MacDonell, J. Jorquera, E. Sepúlveda, S. Feron, P. Llanillo, F. Labbe, J. Carrasco, et al. 2018. Effects of soiling on photovoltaic (PV) modules in the Atacama Desert. Scientific Reports. 8(1):1–14. doi:10.1038/s41598-018-32291-8.
  • Darwish, Z. A., H. A. Kazem, K. Sopian, M. A. A. Alghoul, and H. Alawadhi. 2018. Experimental investigation of dust pollutants and the impact of environmental parameters on PV performance: An experimental study. Environmental Development Sustain 20 (1):155–74. doi:10.1007/s10668-016-9875-7.
  • Darwish, Z. A., H. A. Kazem, K. Sopian, M. A. A. Al-Goul, and H. Alawadhi. 2015. Effect of dust pollutant type on photovoltaic performance. Renewable and Sustainable Energy Reviews 41:735–44. doi:10.1016/j.rser.2014.08.068.
  • Deepak, C. S. M., and C. S. Malvi. 2022. “Experimental investigation of effect of dust accumulation and discoloration on photovoltaic panel material,”. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44 (2):4427–41. doi:10.1080/15567036.2022.2077477.
  • Dhaouadi, R., A. Al-Othman, A. A. Aidan, M. Tawalbeh, and R. Zannerni. 2021. A characterization study for the properties of dust particles collected on photovoltaic (PV) panels in Sharjah, United Arab Emirates. Renewable Energy 171:133–40. doi:10.1016/j.renene.2021.02.083.
  • Elnozahy, A., A. K. A. Rahman, A. H. H. Ali, M. Abdel-Salam, and S. Ookawara. 2015. Performance of a PV module integrated with standalone building in hot arid areas as enhanced by surface cooling and cleaning. Energy and Buildings 88:100–09. doi:10.1016/j.enbuild.2014.12.012.
  • El-Shobokshy, M. S., and F. M. Hussein. 1993. Degradation of photovoltaic cell performance due to dust deposition on to its surface. Renewable Energy 3 (6–7):585–90. doi:10.1016/0960-1481(93)90064-N.
  • Hammad, B., M. Al-Abed, A. Al-Ghandoor, A. Al-Sardeah, and A. Al-Bashir. 2018. Modeling and analysis of dust and temperature effects on photovoltaic systems’ performance and optimal cleaning frequency: Jordan case study. Renewable and Sustainable Energy Reviews 82 (July 2017):2218–34. doi: 10.1016/j.rser.2017.08.070.
  • Kaldellis, J. K., and A. Kokala. 2010. Quantifying the decrease of the photovoltaic panels’ energy yield due to phenomena of natural air pollution disposal. Energy 35 (12):4862–69. doi:10.1016/j.energy.2010.09.002.
  • Kaldellis, J. K., A. Kokala, and M. Kapsali. 2010. Natural air pollution deposition impact on the efficiency of PV panels in urban environment. Fresenius Environmental Bulletin 19 (12):2864–72.
  • Kazem, H. A., A. H. A. Al-Waeli, M. T. Chaichan, and K. Sopian. 2022. Modeling and experimental validation of dust impact on solar cell performance. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 00 (00):1–17. doi:10.1080/15567036.2021.2024922.
  • Kazem, H. A., and M. T. Chaichan. 2016. Experimental analysis of the effect of dust’s physical properties on photovoltaic modules in Northern Oman. Solar Energy 139:68–80. doi:10.1016/j.solener.2016.09.019.
  • Kazem, H. A., and M. T. Chaichan. 2019. The effect of dust accumulation and cleaning methods on PV panels’ outcomes based on an experimental study of six locations in Northern Oman. Solar Energy 187 (May):30–38. doi:10.1016/j.solener.2019.05.036.
  • Kazem, H. A., M. T. Chaichan, A. H. A. Al-Waeli, R. Al-Badi, M. A. Fayad, and A. Gholami. 2022. Dust impact on photovoltaic/thermal system in harsh weather conditions. Solar Energy 245 (Oct):308–21. doi: 10.1016/j.solener.2022.09.012.
  • Kazem, H. A., M. T. Chaichan, A. H. A. Al-Waeli, and K. Sopian. 2020a. Analysis of the effects of cell temperature on the predictability of the solar photovoltaic power production. Solar Energy 153 (8):540–61. doi:10.1016/j.solener.2020.06.043.
  • Kazem, H. A., M. T. Chaichan, A. H. A. Al-Waeli, and K. Sopian. 2020b. A novel model and experimental validation of dust impact on grid-connected photovoltaic system performance in Northern Oman. Solar Energy 206 (May):564–78. doi:10.1016/j.solener.2020.06.043.
  • Kazem, H. A., M. T. Chaichan, A. H. A. Al-Waeli, and K. Sopian. 2020c. A review of dust accumulation and cleaning methods for solar photovoltaic systems. Journal of Cleaner Production 276:123187. doi:10.1016/j.jclepro.2020.123187.
  • Kazem, H. A., T. Khatib, K. Sopian, F. Buttinger, W. Elmenreich, and A. S. Albusaidi. 2013. Effect of dust deposition on the performance of multi-crystalline photovoltaic modules based on experimental measurements. International Journal of Renewable Energy Research 3 (4):850–53. [Online]. Available. https://pdfs.semanticscholar.org/0fc2/393de88e647da2d65d1e0022df873fb37e81.pdf.
  • Lasfar, S., F. Haidara, C. Mayouf, F. M. Abdellahi, M. Elghorba, A. Wahid, and C. S. E. Kane. 2021. Study of the influence of dust deposits on photovoltaic solar panels: Case of Nouakchott. Energy for Sustainable Development 63:7–15. doi:10.1016/j.esd.2021.05.002.
  • Liu, X., S. Yue, L. Lu, and J. Li. 2021. Investigation of the dust scaling behaviour on solar photovoltaic panels. Journal of Cleaner Production 295:126391. doi:10.1016/j.jclepro.2021.126391.
  • Maghami, M. R., H. Hizam, C. Gomes, M. A. Radzi, M. I. Rezadad, and S. Hajighorbani. 2016. Power loss due to soiling on solar panel: A review. Renewable and Sustainable Energy Reviews 59:1307–16. doi:10.1016/j.rser.2016.01.044.
  • Mani, M., and R. Pillai. 2010. Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations. Renewable and Sustainable Energy Reviews 14 (9):3124–31. doi:10.1016/j.rser.2010.07.065.
  • Massi Pavan, A., A. Mellit, and D. De Pieri. 2011. The effect of soiling on energy production for large-scale photovoltaic plants. Solar Energy 85 (5):1128–36. doi:10.1016/j.solener.2011.03.006.
  • Mastekbayeva, G. A., and S. Kumar. 2000. Effect of dust on the transmittance of low density polyethylene glazing in a tropical climate. Solar Energy 68 (2):135–41. doi:10.1016/S0038-092X(99)00069-9.
  • Micheli, L., E. F. Fernández, J. T. Aguilera, and F. Almonacid. 2021. Economics of seasonal photovoltaic soiling and cleaning optimization scenarios. Energy 215 (105229). doi: 10.1016/j.energy.2020.119018.
  • Mohsina, L., A. Sakhrieha, A. Aboushic, A. Hamdanc, and M. Hamdana. 2018. Optimized cleaning and cooling for photovoltaic modules based on. Thermal Science 22 (1 Part A):237–46. doi:10.2298/TSCI151004145M.
  • Niknia, I., M. Yaghoubi, and R. Hessami. 2012. A novel experimental method to find dust deposition effect on the performance of parabolic trough solar collectors. The International Journal of Environmental Studies 69 (2):233–52. doi:10.1080/00207233.2012.664810.
  • Parajuli, S. P., and H. Kim. 2019. Dust emission modeling using a new high ‐ resolution dust source function in WRF ‐ Chem with implications for air quality 1–25. doi: 10.1029/2019JD030248.
  • Q Zhao, W., Y. Lv, Z. Wei, W. Yan, and Q. Zhou. 2021. Review on dust deposition and cleaning methods for solar PV modules. Renewable and Sustainable Energy Reviews 13 (3):032701. doi:10.1063/5.0053866.
  • Roth, R. B. P., and E. P. 1980. The effect of soiling on solar mirrors and techniques used to maintain high reflectivity. Solar Material Science 81 (6):199–227.
  • Salimi, H., A. Mirabdolah Lavasani, H. Ahmadi-Danesh-Ashtiani, and R. Fazaeli. 2019. Effect of dust concentration, wind speed, and relative humidity on the performance of photovoltaic panels in Tehran. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 00 (00):1–11. doi:10.1080/15567036.2019.1677811.
  • Sarver, T., A. Al-Qaraghuli, and L. L. Kazmerski. 2013. A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches. Renewable and Sustainable Energy Reviews 22:698–733. doi:10.1016/j.rser.2012.12.065.
  • Sayigh, E. A. A. M. 1979. Solar energy applications in buildings. 1st ed. United States: Academic Press.
  • Sayyah, A., M. N. Horenstein, and M. K. Mazumder. 2014. Energy yield loss caused by dust deposition on photovoltaic panels. Solar Energy 107:576–604. doi:10.1016/j.solener.2014.05.030.
  • Sopian, K., A. H. A. Al-Waeli, and H. A. Kazem. 2020. Energy, exergy and efficiency of four photovoltaic thermal collectors with different energy storage material. Journal of Energy Storage 29 (October 2019):101245. doi:10.1016/j.est.2020.101245.
  • Vedulla, G., A. Geetha, and R. Senthil. 2023. Review of strategies to mitigate dust deposition on solar photovoltaic systems. Energies 16 (109):1–29. doi:10.3390/en16010109.
  • Verma, L. K., M. Sakhuja, J. Son, A. J. Danner, H. Yang, H. C. Zeng, and C. S. Bhatia. 2011. Self-cleaning and antireflective packaging glass for solar modules. Renewable Energy 36 (9):2489–93. doi:10.1016/j.renene.2011.02.017.
  • Yousif, J. H., H. A. Kazem, H. Al-Balushi, K. Abuhmaidan, and R. Al-Badi. 2022. Artificial Neural network modelling and experimental evaluation of dust and thermal energy impact on monocrystalline and polycrystalline photovoltaic modules. Energies 15 (11):1–17. doi:10.3390/en15114138.
  • Zaraket, J., M. Aillerie, C. Salame, and E. Losson. 2019. Output voltage changes in PV solar modules after electrical and thermal stresses. Experimental analysis. Energy Procedia 157:1404–11. doi:10.1016/j.egypro.2018.11.305.
  • Zhao, N., S. Yan, N. Zhang, and X. Zhao. 2022. Impacts of seasonal dust accumulation on a point-focused Fresnel high-concentration photovoltaic/thermal system. Renewable Energy 191:732–46. doi:10.1016/j.renene.2022.04.039.
  • Zorrilla-Casanova, J., Carretero J, Bernaola P, Carpena P, Mora-López L, Sidrach-de-Cardona M. Analysis of dust losses in photovoltaic modules, 2985–92; 2011. doi: 10.3384/ecp110572985

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.