77
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Energy, exergy and economic (3E) study on waste heat utilization of gas turbine by improved recompression cycle and partial cooling cycle

, , ORCID Icon, , , & show all
Pages 4127-4145 | Received 15 Jun 2022, Accepted 28 Mar 2023, Published online: 17 Apr 2023

References

  • Dostal, V., P. Hejzlar, and M. J. Driscoll. 2005. A supercritical carbon dioxide cycle for next generation nuclear reactors. Nuclear Technology 154 (3):265–82. doi:10.13182/NT154-265.
  • Dostal, V., P. Hejzlar, and M. Driscoll. 2006. High-performance supercritical carbon dioxide cycle for next-generation nuclear reactors. Nuclear Technology 154 (3):265–82. doi:10.13182/NT154-265.
  • Feng, H., Z. Wu, L. Chen, and Y. Ge. 2021. Constructal thermodynamic optimization for dual-pressure organic Rankine cycle in waste heat utilization system. Energy Conversion and Management 227:113585. doi:10.1016/j.enconman.2020.113585.
  • Forman, C., I. K. Muritala, R. Pardemann, and B. Meyer. 2016. Estimating the global waste heat potential. Renewable and Sustainable Energy Reviews 57:1568–79. doi:10.1016/j.rser.2015.12.192.
  • Gil, L., S. F. Otín, J. M. Embid, M. A. Gallardo, S. Blanco, M. Artal, and I. Velasco. 2008. Experimental setup to measure critical properties of pure and binary mixtures and their densities at different pressures and temperatures: Determination of the precision and uncertainty in the results. The Journal of Supercritical Fluids 44 (2):123–38. doi:10.1016/j.supflu.2007.11.003.
  • Guo, J., M. Xu, and L. Cheng. 2010. Thermodynamic analysis of waste heat power generation system. Energy 35 (7):2824–35. doi:10.1016/j.energy.2010.03.012.
  • Haglind, F., and B. Elmegaard. 2009. Methodologies for predicting the part-load performance of aero-derivative gas turbines. Energy 34 (10):1484–92. doi:10.1016/j.energy.2009.06.042.
  • Hou, S., Y. Wu, Y. Zhou, and L. Yu. 2017. Performance analysis of the combined supercritical CO 2 recompression and regenerative cycle used in waste heat recovery of marine gas turbine. Energy Conversion and Management 151:73–85. doi:10.1016/j.enconman.2017.08.082.
  • Huck, P., S. Freund, M. Lehar, and Peter M. 2016. Performance comparison of supercritical CO2 versus steam bottoming cycles for gas turbine combined cycle applications.
  • Kim, M. S., Y. Ahn, B. Kim, and J. I. Lee. 2016. Study on the supercritical CO2 power cycles for landfill gas firing gas turbine bottoming cycle. Energy 111 (sep.15):893–909. doi:10.1016/j.energy.2016.06.014.
  • Y. M. Kim, C. G. Kim, and D. Favrat. 2012. Transcritical or supercritical CO2 cycles using both low- and high-temperature heat sources - ScienceDirect. Energy 43 (1):402–15. doi:10.1016/j.energy.2012.03.076.
  • Kim, Y. M., J. L. Sohn, and E. S. Yoon. 2017. Supercritical CO2 Rankine cycles for waste heat recovery from gas turbine. Energy 118 (JAN.1):893–905. doi:10.1016/j.energy.2016.10.106.
  • Kulhánek, M., I. Václav, D. D. Ph. 2011. Supercritical carbon dioxide cycles thermodynamic analysis and comparison. supercritical co power cycle symposium, Ústav mechaniky tekutin a energetiky, České vysoké učení technické v Praze Technická 4, 166 07 Praha 6.
  • Li, B., J. Jiang, and C. Yang. 2014. M701F3 gas turbine TCA/FGH waste heat air waste heat utilization research. Gas Turbine Technology 27 (03):8–13.
  • Li, B., S. S. Wang, K. Wang, and L. Song. 2021. Comparative investigation on the supercritical carbon dioxide power cycle for waste heat recovery of gas turbine. Energy Conversion and Management 228:113670. doi:10.1016/j.enconman.2020.113670.
  • Luo, Z., Q. Zhang, Y. Zhao, and S. Pavel. 2020. Thermodynamic analysis and multi-objective optimization of a transcritical CO2 waste heat recovery system for cruise ship application. Energy Conversion and Management. doi:10.1016/j.enconman.2020.113612.
  • Mansoury, M., S. Jafarmadar, and S. Khalilarya. 2018. Energy and exergy analyses of a combined cycle Kalina and organic Rankine cycles using waste heat. International Journal of Exergy 27 (2):251. doi:10.1504/IJEX.2018.094601.
  • Pan, P., C. Yuan, Y. Sun, Yan, X., Lu, M., and Bucknall, R. 2020. Thermo-economic analysis and multi-objective optimization of S-CO2 Brayton cycle waste heat recovery system for an ocean-going 9000 TEU container ship. Energy Conversion and Management 221 (5):113077. doi:10.1016/j.enconman.2020.113077.
  • Sarkar, J. 2009. Second law analysis of supercritical CO2 recompression Brayton cycle. Energy 34 (9):1172–78. doi:10.1016/j.energy.2009.04.030.
  • Song, J., X. S. Li, X. D. Ren, and C. -W. Gu. 2018. Performance improvement of a preheating supercritical CO2 (S-CO2) cycle based system for engine waste heat recovery. Energy Conversion & Management 161 (APR.):225–33. doi:10.1016/j.enconman.2018.02.009.
  • Tao, Z., Q. Zhao, H. Tang, and J. Wu. 2019. Thermodynamic and exergetic analysis of supercritical carbon dioxide Brayton cycle system applied to industrial waste heat recovery. Proceedings of the CSEE 39 (23):6944–51+7107.
  • Villafana, E., and J. Bueno. 2019. Thermoeconomic and environmental analysis and optimization of the supercritical CO2 cycle integration in a simple cycle power plant. Applied Thermal Engineering 152:1–12. doi:10.1016/j.applthermaleng.2019.02.052.
  • Wang, X., E. H. Sun, J. L. Xu. 2022. Cost models of key components of supercritical carbon dioxide cycle: Research progress. Proceedings of the CSEE 42 (02):650–63. Beijing.
  • Wen, X., and D. Xiao. 2010. Analysis of modern marine gas turbine development trend. Ship Science and Technology (8):5–18.
  • Wright, S. A. 2016. Thermo-economic analysis of four S-CO2 waste heat recovery power systems. Fifth International SCO2 Symposium, San Antonio, TX, 28–31.
  • Xie, Y., Y. Wang, D. Zhang, and D. Shi. 2018. Review on research of supercritical carbon dioxide Brayton cycle and turbomachinery. Proceedings of the CSEE 38 (24):7276–86+7454.
  • Zhang, L., R. He, S. Wang, and Q. Zhang. 2020. A review of rotating stall in vaneless diffuser of centrifugal compressor. Journal of Thermal Science 29 (2):323–42. doi:10.1007/s11630-020-1261-y.
  • Zhang, L., R. He, X. Wang, Q. Zhang, and S. Wang. 2019. Study on static and dynamic characteristics of an axial fan with abnormal blade under rotating stall conditions. Energy 170:305–25. doi:10.1016/j.energy.2018.12.125.
  • Zhao, Y. 2018. Thermodynamic study of supercritical carbon dioxide power cycle integrated with coal gasification process [D]. Beijing: University of Chinese Academy of Sciences.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.