211
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Kinetic and thermodynamic evaluation of almond shells pyrolytic behavior using Coats–Redfern and pyrolysis product distribution model

, ORCID Icon, & ORCID Icon
Pages 4446-4462 | Received 14 Jul 2022, Accepted 11 Apr 2023, Published online: 19 Apr 2023

References

  • Ahmad, M. S., Mehmood MA, Taqvi ST, Elkamel A, Liu CG, Xu J, Rahimuddin SA, Gull M. 2017. Pyrolysis, kinetics analysis, thermodynamics parameters and reaction mechanism of Typha latifolia to evaluate its bioenergy potential. Bioresource Technology 245:491–501. doi:10.1016/j.biortech.2017.08.162.
  • Ashraf, A., H. Sattar, and S. Munir. 2019. Thermal decomposition study and pyrolysis kinetics of coal and agricultural residues under non-isothermal conditions. Fuel 235:504–14. doi:10.1016/j.fuel.2018.07.120.
  • Balci, S., T. Dogu, and H. Yucel. 1993. Pyrolysis kinetics of lignocellulosic materials. Industrial & Engineering Chemistry Research 32 (11):2573–79. doi:10.1021/ie00023a021.
  • Caballero, J., J. Conesa, R. Font, and A. Marcilla. 1997. Pyrolysis kinetics of almond shells and olive stones considering their organic fractions. Journal of Analytical and Applied Pyrolysis 42 (2):159–75. doi:10.1016/S0165-2370(97)00015-6.
  • Chiou, B. -S., Valenzuela-Medina D, Bilbao-Sainz C, Klamczynski AP, Avena-Bustillos RJ, Milczarek RR, Du WX, Glenn GM, Orts WJ. 2016. Torrefaction of almond shells: Effects of torrefaction conditions on properties of solid and condensate products. Industrial Crops and Products 86:40–48. doi:10.1016/j.indcrop.2016.03.030.
  • Din, M. I., A. Amanat, Z. Hussain, R. Khalid, and A. Rauf. 2021. Pyrolysis of almond shell biomass: Effect of temperature and catalyst on product yield. International Journal of Environmental Analytical Chemistry 1–14. doi:10.1080/03067319.2021.1899167.
  • El Mashad, H. M., A. Edalati, R. Zhang, and B. M. Jenkins. 2022. Production and Characterization of Biochar from Almond Shells. Clean Technologies 4 (3):854–64. doi:10.3390/cleantechnol4030053.
  • Fagbemi, L., L. Khezami, and R. Capart. 2001. Pyrolysis products from different biomasses: Application to the thermal cracking of tar. Applied Energy 69 (4):293–306. doi:10.1016/S0306-2619(01)00013-7.
  • Font, R., A. Marcilla, E. Verdu, and J. Devesa. 1991. Thermogravimetric kinetic study of the pyrolysis of almond shells and almond shells impregnated with CoCl2. Journal of Analytical and Applied Pyrolysis 21 (3):249–64. doi:10.1016/0165-2370(91)80001-O.
  • Garba, M., D. Ingham, L. Ma, M. Degereji, M. Pourkashanian, and A. Williams. 2013. Modelling of deposit formation and sintering for the co-combustion of coal with biomass. Fuel 113:863–72. doi:10.1016/j.fuel.2012.12.065.
  • García-Velásquez, C. A., and C. A. Cardona. 2019. Comparison of the biochemical and thermochemical routes for bioenergy production: A techno-economic (TEA), energetic and environmental assessment. Energy 172:232–42. doi:10.1016/j.energy.2019.01.073.
  • Hameed, Z., Z. Aman, S. R. Naqvi, R. Tariq, I. Ali, and A. A. Makki. 2018. Kinetic and thermodynamic analyses of sugar cane bagasse and sewage sludge co-pyrolysis process. Energy & Fuels 32 (9):9551–58. doi:10.1021/acs.energyfuels.8b01972.
  • Haykiri-Acma, H., S. Yaman, and S. Kucukbayrak. 2006. Effect of heating rate on the pyrolysis yields of rapeseed. Renewable Energy 31 (6):803–10. doi:10.1016/j.renene.2005.03.013.
  • Jha, S., S. Nanda, B. Acharya, and A. K. Dalai. 2022. A review of thermochemical conversion of waste biomass to biofuels. Energies 15 (17):6352. doi:10.3390/en15176352.
  • Kan, T., V. Strezov, and T. J. Evans. 2016. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Reviews 57:1126–40. doi:10.1016/j.rser.2015.12.185.
  • Khan, S., A. Nisar, B. Wu, Q. -L. Zhu, Y. -W. Wang, G. -Q. Hu, and M. -X. He. 2022. Bioenergy production in Pakistan: Potential, progress, and prospect. The Science of the Total Environment 814:152872. doi:10.1016/j.scitotenv.2021.152872.
  • Li, X., Y. Liu, J. Hao, and W. Wang. 2018. Study of almond shell characteristics. Materials 11 (9):1782. doi:10.3390/ma11091782.
  • Munir, S., S. Daood, W. Nimmo, A. Cunliffe, and B. Gibbs. 2009. Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresource Technology 100 (3):1413–18. doi:10.1016/j.biortech.2008.07.065.
  • Munir, S., H. Sattar, A. Nadeem, and M. Azam. 2017. Thermal and kinetic performance analysis of corncobs, Falsa sticks, and Chamalang coal under oxidizing and inert atmospheres. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (8):775–82. doi:10.1080/15567036.2016.1263254.
  • Naqvi, S. R., Hameed Z, Tariq R, Taqvi SA, Ali I, Niazi MB, Noor T, Hussain A, Iqbal N, Shahbaz M. 2019b. Synergistic effect on co-pyrolysis of rice husk and sewage sludge by thermal behavior, kinetics, thermodynamic parameters and artificial neural network. Waste Management 85:131–40. doi:10.1016/j.wasman.2018.12.031.
  • Naqvi, S. R., Tariq R, Hameed Z, Ali I, Naqvi M, Chen WH, Ceylan S, Rashid H, Ahmad J, Taqvi SA, Shahbaz M. 2019a. Pyrolysis of high ash sewage sludge: Kinetics and thermodynamic analysis using Coats-Redfern method. Renewable Energy 131:854–60. doi:10.1016/j.renene.2018.07.094.
  • Naqvi, S. R., Tariq R, Hameed Z, Ali I, Taqvi SA, Naqvi M, Niazi MB, Noor T, Farooq W. 2018. Pyrolysis of high-ash sewage sludge: Thermo-kinetic study using TGA and artificial neural networks. Fuel 233:529–38. doi:10.1016/j.fuel.2018.06.089.
  • Naqvi, S. R., R. Tariq, M. Shahbaz, M. Naqvi, M. Aslam, Z. Khan, H. Mackey, G. Mckay, and T. Al-Ansari. 2021. Recent Developments on Sewage Sludge Pyrolysis and its Kinetics: Resources Recovery, Thermogravimetric Platforms, and Innovative Prospects. Computers & Chemical Engineering 150:107325. doi:10.1016/j.compchemeng.2021.107325.
  • Neves, D., H. Thunman, A. Matos, L. Tarelho, and A. Gómez-Barea. 2011. Characterization and prediction of biomass pyrolysis products. Progress in Energy and Combustion Science 37 (5):611–30. doi:10.1016/j.pecs.2011.01.001.
  • Nhuchhen, D. R., and P. A. Salam. 2012. Estimation of higher heating value of biomass from proximate analysis: A new approach. Fuel 99:55–63. doi:10.1016/j.fuel.2012.04.015.
  • Nisar, J., Rahman A, Ali G, Shah A, Farooqi ZH, Bhatti IA, Iqbal M, Ur Rehman N. 2022. Pyrolysis of almond shells waste: Effect of zinc oxide on kinetics and product distribution. Biomass Conversion and Biorefinery 12 (7):2583–95. doi:10.1007/s13399-020-00762-6.
  • Önal, E., B. B. Uzun, and A. E. Pütün. 2017. The effect of pyrolysis atmosphere on bio-oil yields and structure. International Journal of Green Energy 14 (1):1–8. doi:10.1080/15435075.2014.952421.
  • Pandey, A., S. Negi, P. Binod, and C. Larroche. 2014. Pretreatment of biomass: Processes and technologies. Netherlands: Elsevier Inc.
  • Parikh, J., S. Channiwala, and G. Ghosal. 2007. A correlation for calculating elemental composition from proximate analysis of biomass materials. Fuel 86 (12–13):1710–19. doi:10.1016/j.fuel.2006.12.029.
  • Peters, J. F., S. W. Banks, A. V. Bridgwater, and J. Dufour. 2017. A kinetic reaction model for biomass pyrolysis processes in Aspen Plus. Applied Energy 188:595–603. doi:10.1016/j.apenergy.2016.12.030.
  • Pretorius, G. N., Bunt JR, Gräbner M, Neomagus H, Waanders FB, Everson RC, Strydom CA. 2017. Evaluation and prediction of slow pyrolysis products derived from coals of different rank. Journal of Analytical and Applied Pyrolysis 128:156–67. doi:10.1016/j.jaap.2017.10.014.
  • Qin, Z., Zhuang Q, Cai X, He Y, Huang Y, Jiang D, Lin E, Liu Y, Tang Y, Wang MQ. 2018. Biomass and biofuels in China: Toward bioenergy resource potentials and their impacts on the environment. Renewable and Sustainable Energy Reviews 82:2387–400. doi:10.1016/j.rser.2017.08.073.
  • Quesada, L., A. Pérez, M. Calero, G. Blázquez, and M. Martín-Lara. 2018. Reaction schemes for estimating kinetic parameters of thermal decomposition of native and metal-loaded almond shell. Process Safety and Environmental Protection 118:234–44. doi:10.1016/j.psep.2018.06.041.
  • Rasool, T., I. Najar, V. C. Srivastava, and A. Pandey. 2021. Pyrolysis of almond (Prunus amygdalus) shells: Kinetic analysis, modelling, energy assessment and technical feasibility studies. Bioresource Technology 337:125466. doi:10.1016/j.biortech.2021.125466.
  • Salema, A. A., R. M. W. Ting, and Y. K. Shang. 2019. Pyrolysis of blend (oil palm biomass and sawdust) biomass using TG-MS. Bioresource Technology 274:439–46. doi:10.1016/j.biortech.2018.12.014.
  • Shen, J., S. Zhu, X. Liu, H. Zhang, and J. Tan. 2010. The prediction of elemental composition of biomass based on proximate analysis. Energy Conversion and Management 51 (5):983–87. doi:10.1016/j.enconman.2009.11.039.
  • Silva, J. E., Calixto GQ, de Almeida CC, Melo DM, Melo MA, Freitas JC, Braga RM. 2019. Energy potential and thermogravimetric study of pyrolysis kinetics of biomass wastes. Journal of Thermal Analysis and Calorimetry. 137(5):1635–43. doi:10.1007/s10973-019-08048-4.
  • Simões, L. M. S. A., C. Setter, N. G. Sousa, C. R. Cardoso, and T. J. P. de Oliveira. 2022. Biomass to biofuel densification of coconut fibers: Kinetic triplet and thermodynamic evaluation. Biomass Conversion and Biorefinery 1–18. doi:10.1007/s13399-022-02393-5.
  • Tariq, R., Y. M. Zaifullizan, A. A. Salema, A. Abdulatif, and L. S. Ken. 2022. Co-pyrolysis and co-combustion of orange peel and biomass blends: Kinetics, thermodynamic, and ANN application. Renewable Energy 198:399–414. doi:10.1016/j.renene.2022.08.049.
  • Wang, J., D. Hou, Z. Liu, J. Tao, B. Yan, Z. Liu, T. Yang, H. Su, M. H. Tahir, and G. Chen. 2022. Energy analysis of agricultural waste biomass for energy-oriented utilization in China: Current situation and perspectives. The Science of the Total Environment 849:157798. doi:10.1016/j.scitotenv.2022.157798.
  • Yang, L., L. Yang, D. Dai, and J. Yao. 2022. Comprehensive utilization of lignocellulosic biomass for the electrode and electrolyte in zinc-ion hybrid supercapacitors. Journal of Materials Chemistry A 10 (45):24208–15. doi:10.1039/D2TA06835D.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.