72
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental study on the effect of asphaltenes on wax removal rate

, , , , , & show all
Pages 4386-4397 | Received 10 Nov 2022, Accepted 14 Mar 2023, Published online: 19 Apr 2023

References

  • Alhosani, A., and N. Daraboina. 2020. Unified model to predict asphaltene deposition in production pipelines. Energy & Fuels 34 (2):1720–27. doi:10.1021/acs.energyfuels.9b04287.
  • Bell, E., Y. Lu, N. Daraboina, et al. 2021. Experimental investigation of active heating in removal of wax deposits. Journal of Petroleum Science and Engineering 200:108346. doi:10.1016/j.petrol.2021.108346.
  • Chen, G., Y. F. Li, W. Zhao, K. Qu, Y. Ning, and J. Zhang. 2015. Investigation of cyclohexanone pentaerythritol ketal as a clean flow improver for crude oil. Fuel Processing Technology 33:64–68. doi:10.1016/j.fuproc.2014.12.029.
  • D’Avila, F. G., C. M. F. Silva, L. Steckel, et al. 2020. Influence of asphaltene aggregation state on the wax crystallization process and the efficiency of EVA as a wax crystal modifier: A study using model systems. Energy & Fuels 34 (4):4095–105. doi:10.1021/acs.energyfuels.9b04166.
  • Fajardo-Rojas, F., O. A. Alvarez Solano, J. R. Samaniuk, and D. Pradilla. 2021. Deviation from equilibrium thermodynamics of an asphaltene model compound during compression–expansion experiments at fluid–fluid interfaces. Langmuir 37 (5):1799–810. doi:10.1021/acs.langmuir.0c03151.
  • Ghanem, A., R. D. Alharthy, S. M. Desouky, et al. 2022. Synthesis and characterization of imidazolium-based ionic liquids and evaluating their performance as asphaltene dispersants. Materials (Basel) 15 (4):1600. doi:10.3390/ma15041600.
  • Jiang, H., X. Y. Liu, H. Q. Zhao, et al. 2020. Numerical study f or removing wax deposition by thermal washing for the waxy crude oil gathering pipeline. Science Progress 103 (3):551–58. doi:10.1177/0036850420958529.
  • Lei, Y., S. P. Han, and J. J. Zhang. 2016. Effect of the dispersion degree of asphaltene on wax deposition in crude oil under static conditions. Fuel Process Technology 146:20–28. doi:10.1016/j.fuproc.2016.02.005.
  • Lei, Y., S. Han, J. Zhang, Y. Bao, Z. Yao, and Y. Xu. 2014. Study on the effect of dispersed and aggregated asphaltene on wax crystallization, gelation, and flow behavior of crude oil. Energy & Fuels 28:2314–21. doi:10.1021/ef4022619.
  • Li, C., J. Cai, F. Yang, et al. 2016. Effect of asphaltenes on the stratification phenomenon of wax-oil gel deposits formed in a new cylindrical couette device. Journal of Petroleum Science and Engineering 140:73–84. doi:10.1016/j.petrol.2016.01.004.
  • Li, G., M. Han, Y. Tan, A. Meng, J. Li, and S. Li. 2020. Research on bitumen molecule aggregation based on coarse-grained molecular dynamics. Construction and Building Materials 120933 263:120933. doi:10.1016/j.conbuildmat.2020.120933.
  • Li, X., D. Liu, H. Sun, and X. Li. 2022. Effect of oil-displacing agent composition on oil/water interface stability of the asphaltene-rich ASP flooding-produced water. Langmuir 38 (11):3329–38. doi:10.1021/acs.langmuir.1c02466.
  • Li, Y., C. Li, Z. Zhao, et al. 2022. Effects of asphaltene concentration and test temperature on the stability of water-in-model waxy crude oil emulsions. ACS Omega 7 (9):8023–35. doi:10.1021/acsomega.1c07174.
  • Li, Y., C. Li, Z. Zhao, W. Cai, X. Xia, B. Yao, G. Sun, and F. Yang. 2020. Effects of asphaltene concentration and test temperature on the stability of water-in-model waxy crude oil emulsions. ACS Omega 7 (9):8023–35. doi:10.1021/acsomega.1c07174.
  • Mehranfar, M., R. Gaikwad, S. Das, et al. 2014. Effect of temperature on morphologies of evaporation-triggered asphaltene nanoaggregates. Langmuir 30 (3):800–04. doi:10.1021/la4045896.
  • Mizuhara, J., Y. Liang, Y. Masuda, K. Kobayashi, H. Iwama, and H. Yonebayashi. 2020. Evaluation of asphaltene adsorption free energy at the oil–water interface: role of heteroatoms. Energy & Fuels 34 (5):5267–80. doi:10.1021/acs.energyfuels.9b03864.
  • Torkaman, M., M. Bahrami, and M. R. Dehghani. 2018. Influence of temperature on aggregation and stability of asphaltenes. II. Orthokinetic aggregation. Energy & Fuels 32 (5):6144–54. doi:10.1021/acs.energyfuels.7b03601.
  • Yan, M. R., G. H. Li, and X. D. Li. 2018. Study on the effect of crude oil composition on waxing characteristics of waxy crude oil. IOP Conference Series: Materials Science and Engineering 452 (3):1–5. doi:10.1088/1757-899X/452/3/032018.
  • Zhang, Y., M. Siskin, M. R. Gray, et al. 2020. Mechanisms of asphaltene aggregation: Puzzles and a new hypothesis. Energy & Fuels 34 (8):9094–107. doi:10.1021/acs.energyfuels.0c01564.
  • Zhang, L. G., J. X. Tan, Z. J. Tao, et al. 2020. Numerical simulation of the temperature field in the wellbore of a reverse-cycle hot-wash rod pump well. Journal of Northeast Petroleum University 225(05). 9-10+94-100. doi:10.3969/j.issn.2095-4107.2020.05.009.
  • Zhao, H. Q., Z. Y. Lu, X. Liu, H. Jiang, Y. Liu, L. Liu, and F. Meng. 2018. Heat transfer performance of thermal-washing process for crude oil pipeline. Thermal Science 2 (22):S737–46. doi:10.2298/TSCI170918060Z.
  • Zhou, Z., X. Y. Liu, X. Q. Li, Y. Xu, and Z. -Z. Wang. 2022. Numerical study on nusselt number of moving phase interface during wax melting in tube using lattice Boltzmann method. Thermal Science 26 (6 part B):63. doi:10.2298/TSCI211226063Z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.