77
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Experimental investigation of asphaltene precipitation during waterflooding using different aqueous phases

, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 4481-4500 | Received 29 Nov 2021, Accepted 29 Nov 2022, Published online: 24 Apr 2023

References

  • Abbaszadeh, M., M. Nasiri, and M. Riazi. 2016. Experimental investigation of the impact of rock dissolution on carbonate rock properties in the presence of carbonated water. Environmental Earth Sciences 75 (9):791. doi:10.1007/s12665-016-5624-3.
  • Abutaqiya, M. I., C. J. Sisco, J. Wang, and F. M. Vargas. 2019. Systematic investigation of asphaltene deposition in the wellbore and near-wellbore region of a deepwater oil reservoir under gas injection. Part 1: Thermodynamic modeling of the phase behavior of polydisperse asphaltenes. Energy & Fuels 33 (5):3632–44. doi:10.1021/acs.energyfuels.8b03234.
  • Alhosani, A., and N. Daraboina. 2020. Unified model to predict asphaltene deposition in production pipelines. Energy & Fuels 34 (2):1720–27. doi:10.1021/acs.energyfuels.9b04287.
  • Alhreez, M., and D. Wen. 2018. Controlled releases of asphaltene inhibitors by nanoemulsions. Fuel 234:538–48. doi:10.1016/j.fuel.2018.06.079.
  • Alimohammadi, S., S. Zendehboudi, and L. James. 2019. A comprehensive review of asphaltene deposition in petroleum reservoirs: Theory, challenges, and tips. Fuel 252:753–91. doi:10.1016/j.fuel.2019.03.016.
  • Alshareef, A. H. 2019. Asphaltenes: Definition, properties, and reactions of model compounds. Energy & Fuels 34 (1):16–30. doi:10.1021/acs.energyfuels.9b03291.
  • Bisweswar, G., A. Al-Hamairi, and S. Jin. 2020. Carbonated water injection: An efficient EOR approach. A review of fundamentals and prospects. Journal of Petroleum Exploration and Production Technology 10 (2):673–85. doi:10.1007/s13202-019-0738-2.
  • Brownlee, M. and L. Sugg. 1987. East vacuum grayburg-san andres unit CO2 injection project: Development and results to date. SPE Annual Technical Conference and Exhibition. Dallas, Texas, USA: OnePetro.
  • Chen, H., F. Wang, and Y. Han. 2015. Gas measurement method and weighing method to measure the core porosity research and comparative analysis. Gas 5 (3): 20–26.
  • Esene, C., N. Rezaei, A. Aborig, S. Zendehboudi, et al. 2019. Comprehensive review of carbonated water injection for enhanced oil recovery. Fuel 237:1086–107. doi:10.1016/j.fuel.2018.08.106.
  • Fakher, S., M. Ahdaya, M. Elturki, A. Imqam, et al. 2020. An experimental investigation of asphaltene stability in heavy crude oil during carbon dioxide injection. Journal of Petroleum Exploration and Production Technology 10(3):919–31. doi:10.1007/s13202-019-00782-7.
  • Fakher, S., and A. Imqam. 2019. Asphaltene precipitation and deposition during CO2 injection in nano shale pore structure and its impact on oil recovery. Fuel 237:1029–39. doi:10.1016/j.fuel.2018.10.039.
  • Farooq, U., M. T.,Tweheyo, J. Sjöblom, G. Øye, et al. 2011. Surface characterization of model, outcrop, and reservoir samples in low salinity aqueous solutions. Journal of Dispersion Science and Technology 32(4):519–31. doi:10.1080/01932691003756936.
  • Gonzalez, K., H. Nasrabadi, and M. Barrufet. 2017. Modeling asphaltene precipitation in a compositional reservoir simulator using three-phase equilibrium. Journal of Petroleum Science and Engineering 154:602–11. doi:10.1016/j.petrol.2016.09.010.
  • Gregg, S., and K. Sing. 1982. Adsorption, surface area and porosity. Academic Press, London. Adsorption, surface area and porosity. 2nd ed. London: Academic Press.
  • Guan, Q., A. Goharzadeh, J. C. Chai, F. M. Vargas, S. L. Biswal, W. G. Chapman, M. Zhang, Y. F. Yap, et al. 2018. An integrated model for asphaltene deposition in wellbores/pipelines above bubble pressures. Journal of Petroleum Science and Engineering 169:353–73. doi:10.1016/j.petrol.2018.05.042.
  • Hiorth, A., L. Cathles, and M. Madland. 2010. The impact of pore water chemistry on carbonate surface charge and oil wettability. Transport in porous media. 85 (1):1–21. doi:10.1007/s11242-010-9543-6.
  • Kamali, F., F. Le-Hussain, and Y. Cinar. 2017. An experimental and numerical analysis of water-alternating-gas and simultaneous-water-and-gas displacements for carbon dioxide enhanced oil recovery and storage. SPE Journal 22 (02):521–38. doi:10.2118/183633-PA.
  • Karambeigi, M. A., M. Nikazar, and R. Kharrat. 2016. Experimental evaluation of asphaltene inhibitors selection for standard and reservoir conditions. Journal of Petroleum Science and Engineering 137:74–86. doi:10.1016/j.petrol.2015.11.013.
  • Khurshid, I., H. Al-Attar, and A. Alraeesi. 2018. Modeling cementation in porous media during waterflooding: Asphaltene deposition, formation dissolution and their cementation. Journal of Petroleum Science and Engineering 161:359–67. doi:10.1016/j.petrol.2017.11.038.
  • Kim, S. T., M. -E. Boudh-Hir, and G. A. Mansoori. The role of asphaltene in wettability reversal. in SPE Annual Technical Conference and Exhibition. 1990. New Orleans, Louisiana, USA: OnePetro.
  • López, D., J. E. Jaramillo, E. F. Lucas, M. Riazi, S. H. Lopera, C. A. Franco, F. B. Cortés, et al. 2020. Cardanol/SiO2 nanocomposites for inhibition of formation damage by asphaltene precipitation/deposition in light crude oil reservoirs. part ii: nanocomposite evaluation and coreflooding test. ACS Omega 5(43):27800–10. doi:10.1021/acsomega.0c02722.
  • Masoudi, M., R. Miri, H. Hellevang, S. Kord, et al. 2020. Modified PC-SAFT characterization technique for modeling asphaltenic crude oil phase behavior. Fluid Phase Equilibria 513:112545. doi:10.1016/j.fluid.2020.112545.
  • Nande, S. B., and S. D. Patwardhan. 2021. A review on low salinity waterflooding in carbonates: Challenges and future perspective. Journal of Petroleum Exploration and Production Technology 12 (4):1–19. doi:10.1007/s13202-021-01361-5.
  • Nascimento, F. P., V. J. Pereira, R. P. Souza, R. C. A. Lima, G. M. N. Costa, P. T. V. Rosa, A. F. Forca, S. A. B. Vieira de Melo, et al. 2021. An experimental and theoretical investigation of asphaltene precipitation in a crude oil from the Brazilian pre-salt layer under CO2 injection. Fuel 284:118968. doi:10.1016/j.fuel.2020.118968.
  • Poozesh, A., M. Sharifi, and J. Fahimpour. 2020. Modeling of asphaltene deposition kinetics. Energy & Fuels 34 (8):9304–19. doi:10.1021/acs.energyfuels.0c00809.
  • Qian, K., S. Yang, H. -E. Dou, J. Pang, and Y. Huang. 2019. Formation damage due to asphaltene precipitation during CO 2 flooding processes with NMR technique. Oil & Gas Science and Technology – Revue d’IFP Energies Nouvelles 74:11. doi:10.2516/ogst/2018084.
  • Rahimi, A., M. Safari, B. Honarvar, H. Chabook, R. Gholami, et al. 2020. On time dependency of interfacial tension through low salinity carbonated water injection. Fuel 280:118492. doi:10.1016/j.fuel.2020.118492.
  • Sayegh, S., F. F. Krause, M. Girard, and C. DeBree. 1990. Rock/Fluid interactions of carbonated brines in a sandstone reservoir: Pembina Cardium, Alberta, Canada. SPE formation evaluation. SPE Formation Evaluation 5 (04):399–405. doi:10.2118/19392-PA.
  • Shakiba, M., S. Ayatollahi, and M. Riazi. 2016. Investigation of oil recovery and CO2 storage during secondary and tertiary injection of carbonated water in an Iranian carbonate oil reservoir. Journal of Petroleum Science and Engineering 137:134–43. doi:10.1016/j.petrol.2015.11.020.
  • Shakiba, M., M. Riazi, S. Ayatollahi, M. Takband, et al. 2019. The impact of connate water saturation and salinity on oil recovery and CO2 storage capacity during carbonated water injection in carbonate rock. Chinese Journal of Chemical Engineering 27(7):1699–707. doi:10.1016/j.cjche.2018.09.008.
  • Snosy, M. F., M. Abu El Ela, A. El-Banbi, H. Sayyouh, et al. 2022. Comprehensive investigation of low salinity waterflooding in carbonate reservoirs. Journal of Petroleum Exploration and Production Technology 12: 701–724.
  • Sohrabi, M., N. I. Kechut, M. Riazi, M. Jamiolahmady, S. Ireland, and G. Robertson. 2012. Coreflooding studies to investigate the potential of carbonated water injection as an injection strategy for improved oil recovery and CO2 storage. Transport in porous media. Transport in Porous Media 91 (1):101–21. doi:10.1007/s11242-011-9835-5.
  • Tanikawa, W., and T. Shimamoto. 2006. Klinkenberg effect for gas permeability and its comparison to water permeability for porous sedimentary rocks. Hydrology and Earth System Sciences Discussions 3 (4):1315–38.
  • Thommes, M., K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K. S. W. Sing. 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and applied chemistry. Pure and Applied Chemistry 87 (9–10):1051–69. doi:10.1515/pac-2014-1117.
  • Wheaton, R. 2016. Fundamentals of applied reservoir engineering: Appraisal, economics and optimization. Houston, Texas, USA: Gulf Professional Publishing.
  • Yaseen, S., and G. A. Mansoori. 2019. Microscopic details of asphaltenes aggregation onset during waterflooding. Petroleum Science and Technology 37 (5):573–80. doi:10.1080/10916466.2018.1558240.
  • Zarei, F., and A. Baghban. 2017. Phase behavior modelling of asphaltene precipitation utilizing MLP-ANN approach. Petroleum Science and Technology 35 (20):2009–15. doi:10.1080/10916466.2017.1377233.
  • Zhang, P., M. T. Tweheyo, and T. Austad. 2007. Wettability alteration and improved oil recovery by spontaneous imbibition of seawater into chalk: Impact of the potential determining ions Ca2+, Mg2+, and SO42−. Colloids and Surfaces a. Physicochemical and Engineering Aspects 301 (1–3):199–208. doi:10.1016/j.colsurfa.2006.12.058.
  • Zhou, X., N. R. Morrow, and S. Ma. 2000. Interrelationship of wettability, initial water saturation, aging time, and oil recovery by spontaneous imbibition and waterflooding. SPE Journal 5 (02):199–207. doi:10.2118/62507-PA.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.