55
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Textile dye effluent treatment using advanced sono-electrocoagulation techniques: A Taguchi and particle swarm optimization modeling approach

ORCID Icon & ORCID Icon
Pages 4501-4519 | Received 04 Aug 2022, Accepted 10 Apr 2023, Published online: 24 Apr 2023

References

  • Abdulrazzaq, N. N., B. H. Al-Sabbagh, and H. A. Shanshool. 2021. Coupling of electrocoagulation and microflotation for the removal of textile dyes from aqueous solutions. Journal of Water Process Engineering 40 (October 2020):101906. doi:10.1016/j.jwpe.2020.101906.
  • Ai, Z., J. Li, L. Zhang, and S. Lee. 2010. Rapid decolorization of azo dyes in aqueous solution by an ultrasound-assisted electrocatalytic oxidation process. Ultrasonics Sonochemistry 17 (2):370–75. doi:10.1016/j.ultsonch.2009.10.002.
  • Al-Mamun, M. R., S. Kader, M. S. Islam, and M. Z. H. Khan. 2019. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. Journal of Environmental Chemical Engineering 7 (5). doi: 10.1016/j.jece.2019.103248.
  • Asaithambi, P., and R. Govindarajan. 2021. Hybrid sono-electrocoagulation process for the treatment of landfill leachate wastewater: Optimization through a central composite design approach. Environmental Processes 8 (2):793–816. doi:10.1007/s40710-021-00509-z.
  • Balasubramani, K., N. Sivarajasekar, S. Muthusaravanan, K. Ram, M. Naushad, T. Ahamad, and G. Sharma. 2020. Efficient removal of antidepressant Flupentixol using graphene oxide/cellulose nanogel composite: Particle swarm algorithm based artificial neural network modelling and optimization. Journal of Molecular Liquids 319:114371. doi:10.1016/j.molliq.2020.114371.
  • Baştürk, E., and A. Alver. 2019. Modeling azo dye removal by sono-fenton processes using response surface methodology and artificial neural network approaches. Journal of Environmental Management 248 (July). doi: 10.1016/j.jenvman.2019.109300.
  • Bener, S., Ö. Bulca, B. Palas, G. Tekin, S. Atalay, and G. Ersöz. 2019. Electrocoagulation process for the treatment of real textile wastewater: Effect of operative conditions on the organic carbon removal and kinetic study. Process Safety and Environmental Protection 129:47–54. doi:10.1016/j.psep.2019.06.010.
  • Berkane, N., S. Meziane, and S. Aziri. 2020. Optimization of Congo red removal from aqueous solution using Taguchi experimental design. Separation Science and Technology (Philadelphia) 55 (2):278–88. doi:10.1080/01496395.2019.1577442.
  • Berradi, M., R. Hsissou, M. Khudhair, M. Assouag, O. Cherkaoui, A. El Bachiri, and A. El Harfi. 2019. Textile finishing dyes and their impact on aquatic environs. Heliyon 5 (11). doi: 10.1016/j.heliyon.2019.e02711.
  • Bhomick, P. C., A. Supong, M. Baruah, C. Pongener, C. Gogoi, and D. Sinha. 2020. Alizarin Red S adsorption onto biomass-based activated carbon: Optimization of adsorption process parameters using Taguchi experimental design. International Journal of Environmental Science and Technology 17 (2):1137–48. doi:10.1007/s13762-019-02389-1.
  • Chen, X., G. Chen, and P. L. Yue. 2000. Separation of pollutants from restaurant wastewater by electrocoagulation. Separation and Purification Technology 19 (1–2):65–76. doi:10.1016/S1383-5866(99)00072-6.
  • Daneshvar, N., A. R. Khataee, M. H. Rasoulifard, and M. Pourhassan. 2007. Biodegradation of dye solution containing Malachite Green: Optimization of effective parameters using Taguchi method. 143 (3):214–19. doi:10.1016/j.jhazmat.2006.09.016.
  • Das, D., and B. K. Nandi. 2019. Defluoridization of drinking water by electrocoagulation (EC): Process optimization and kinetic study. Journal of Dispersion Science and Technology 40 (8):1136–46. doi:10.1080/01932691.2018.1496840.
  • Deng, D., M. Lamssali, N. Aryal, A. Ofori-Boadu, M. K. Jha, and R. E. Samuel. 2020. Textiles wastewater treatment technology: A review. Water Environment Research 92 (10):1805–10. doi:10.1002/wer.1437.
  • Dizge, N., C. Akarsu, Y. Ozay, H. E. Gulsen, S. Konen, and M. A. Mazmanci. 2018. Journal of water process engineering Sono-assisted electrocoagulation and cross- fl ow membrane processes for brewery wastewater treatment. Journal of Water Process Engineering 21 (August 2017):52–60. doi:10.1016/j.jwpe.2017.11.016.
  • El-Hosiny, F. I., M. A. Abdel-Khalek, K. A. Selim, and I. Osama. 2018. Physicochemical study of dye removal using electro-coagulation-flotation process. Physicochemical Problems of Mineral Processing 54 (2):321–33. doi:10.5277/ppmp1825.
  • Fetimi, A., S. Merouani, M. S. Khan, M. N. Asghar, K. K. Yadav, B. H. Jeon, M. Hamachi, O. Kebiche-Senhadji, and Y. Benguerba. 2022. Modeling of textile dye removal from wastewater using innovative oxidation technologies (Fe(ii)/Chlorine and H2O2/periodate processes. Artificial Neural Network-Particle Swarm Optimization Hybrid Model: ACS Omega 7 (16):13818–25. doi:10.1021/acsomega.2c00074.
  • Gasmi, A., S. Ibrahimi, N. Elboughdiri, M. A. Tekaya, D. Ghernaout, A. Hannachi, A. Mesloub, B. Ayadi, and L. Kolsi. 2022. Comparative study of chemical coagulation and electrocoagulation for the treatment of real textile wastewater: optimization and operating cost estimation. ACS Omega 7 (26):22456–76. doi:10.1021/acsomega.2c01652.
  • Ghosh, S. B., and N. K. Mondal. 2018. Pt sc. Environmental Nanotechnology, Monitoring & Management. doi:10.1016/j.enmm.2018.100206.
  • Karimifard, S., and M. R. Alavi Moghaddam. 2018. Application of response surface methodology in physicochemical removal of dyes from wastewater: A critical review. The Science of the Total Environment 640–641:772–97. doi:10.1016/j.scitotenv.2018.05.355.
  • Khandegar, V., and A. K. Saroha. 2013. Electrocoagulation for the treatment of textile industry effluent - a review. Journal of Environmental Management 128:949–63. doi:10.1016/j.jenvman.2013.06.043.
  • Kozik, V., K. Barbusinski, M. Thomas, A. Sroda, J. Jampilek, A. Sochanik, A. Smolinski, and A. Bak. 2019. Taguchi method and response surface methodology in the treatment of highly contaminated tannery wastewater using commercial potassium ferrate. Materials 12 (22):1–19. doi:10.3390/ma12223784.
  • Li, J., C. Song, Y. Su, H. Long, T. Huang, T. O. Yeabah, and W. Wu. 2013. A study on influential factors of high-phosphorus wastewater treated by electrocoagulation-ultrasound. Environmental Science and Pollution Research 20 (8):5397–404. doi:10.1007/s11356-013-1537-9.
  • Madan, S. S., and K. L. Wasewar. 2017. Optimization for benzeneacetic acid removal from aqueous solution using CaO2 nanoparticles based on Taguchi method. Journal of Applied Research and Technology 15 (4):332–39. doi:10.1016/j.jart.2017.02.007.
  • Maha Lakshmi, P., and P. Sivashanmugam. 2013. Treatment of oil tanning effluent by electrocoagulation: Influence of ultrasound and hybrid electrode on COD removal. Separation and Purification Technology 116:378–84. doi:10.1016/j.seppur.2013.05.026.
  • Moradi, M., Y. Vasseghian, H. Arabzade, and A. Mousavi Khaneghah. 2021. Various wastewaters treatment by sono-electrocoagulation process: A comprehensive review of operational parameters and future outlook. Chemosphere 263:128314. doi:10.1016/j.chemosphere.2020.128314.
  • Mukherjee, T., P. Das, S. K. Ghosh, and M. Rahaman. 2019. Removal of Alizarin Red S fromWastewater: Optimizing the process parameters for electrocoagulation using taguchi method. In Waste water recycling and management. Springer Singapore. doi:10.1007/978-981-13-2619-6.
  • Muthuramalingam, T., and B. Mohan. 2014. Application of Taguchi-grey multi responses optimization on process parameters in electro erosion. Measurement: Journal of the International Measurement Confederation 58:495–502. doi:10.1016/j.measurement.2014.09.029.
  • Nassef, A. M., H. Rezk, M. A. Abdelkareem, A. Alaswad, and A. Olabi. 2019. Application of fuzzy modelling and Particle Swarm Optimization to enhance lipid extraction from microalgae. Sustainable Energy Technologies and Assessments 35 (June):73–79. doi:10.1016/j.seta.2019.06.003.
  • Olubunmi, B. E., B. Karmakar, O. M. Aderemi, A. U. G, M. Auta, and G. Halder. 2020. Journal of environmental chemical engineering parametric optimization by Taguchi L9 approach towards biodiesel production from restaurant waste oil using Fe-supported anthill catalyst. Journal of Environmental Chemical Engineering 8 (5):104288. doi:10.1016/j.jece.2020.104288.
  • Ptimization, M. E. O., and O. F. F. Lexirubin. 2019. Comparison of particle swarm optimization and response surface methodology in fermentation media optimization of flexirubin production. Jurnal Teknologi 2:53–60. doi: https://doi.org/10.11113/jt.v81.10766/7C.
  • Raschitor, A., C. M. Fernandez, I. Cretescu, M. A. Rodrigo, and P. Cañizares. 2014. Sono-electrocoagulation of wastewater polluted with Rhodamine 6G. Separation and Purification Technology 135:110–16. doi:10.1016/j.seppur.2014.08.003.
  • Safwat, S. M. 2020. Treatment of real printing wastewater using electrocoagulation process with titanium and zinc electrodes. Journal of Water Process Engineering 34 (September 2019). doi: 10.1016/j.jwpe.2020.101137.
  • Shrivastava, P. K., and A. K. Pandey. 2018. Geometrical quality evaluation in laser cutting of Inconel-718 sheet by using Taguchi based regression analysis and particle swarm optimization. Infrared Physics & Technology 89:369–80. doi:10.1016/j.infrared.2018.01.028.
  • Singh, G. K., N. B. Singh, S. P. Shukla, and Markandeya. 2019. Remediation of COD and color from textile wastewater using dual stage electrocoagulation process. SN Applied Sciences 1 (9). doi: 10.1007/s42452-019-1046-7.
  • Sridhar, R., V. Sivakumar, J. Prakash Maran, and K. Thirugnanasambandham. 2014. Influence of operating parameters on treatment of egg processing effluent by electrocoagulation process. International Journal of Environmental Science and Technology 11 (6):1619–30. doi:10.1007/s13762-013-0301-5.
  • Srivastava, V. C., D. Patil, and K. K. Srivastava. 2011. Parameteric optimization of dye removal by electrocoagulation using Taguchi methodology. International Journal of Chemical Reactor Engineering 9. doi:10.1515/1542-6580.2299.
  • Suraj, P., V. Kumar, C. Thakur, and P. Ghosh. 2019. Journal of environmental chemical engineering Taguchi optimization of COD removal by heterogeneous Fenton process using copper ferro spinel catalyst in a fixed bed reactor — RTD, kinetic and thermodynamic study. Journal of Environmental Chemical Engineering 7 (1):102859. doi:10.1016/j.jece.2018.102859.
  • Taheri, M., M. R. A. Moghaddam, and M. Arami. 2013. Techno-economical optimization of Reactive Blue 19 removal by combined electrocoagulation/coagulation process through MOPSO using RSM and ANFIS models. Journal of Environmental Management 128:798–806. doi:10.1016/j.jenvman.2013.06.029.
  • Tezcan Un, U., A. S. Koparal, and U. Bakir Ogutveren. 2009. Electrocoagulation of vegetable oil refinery wastewater using aluminum electrodes. Journal of Environmental Management 90 (1):428–33. doi:10.1016/j.jenvman.2007.11.007.
  • Tir, M., N. Moulai-Mostefa, and M. Nedjhioui. 2015. Optimizing decolorization of methylene blue dye by electrocoagulation using Taguchi approach. Desalination and Water Treatment 55 (10):2705–10. doi:10.1080/19443994.2014.940652.
  • Uzoh, C. F., J. T. Nwabanne, and I. H. Ozofor. 2020. Electrocoagulation of Pb2+, Co2+, and Mn2+ from simulated wastewater: An algorithmic optimization using hybrid RSM–GA–PSO. Environmental Progress & Sustainable Energy 39 (1). doi: 10.1002/ep.13301.
  • Vasudevan, S., G. Sozhan, S. Ravichandran, J. Jayaraj, J. Lakshmi, and S. M. Sheela. 2008. Studies on the removal of phosphate from drinking water by electrocoagulation process. Industrial and Engineering Chemistry Research 47 (6):2018–23. doi:10.1021/ie0714652.
  • Yang, B., J. Zuo, P. Li, K. Wang, X. Yu, and M. Zhang. 2016. Effective ultrasound electrochemical degradation of biological toxicity and refractory cephalosporin pharmaceutical wastewater. Chemical Engineering Journal 287:30–37. doi:10.1016/j.cej.2015.11.033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.