126
Views
2
CrossRef citations to date
0
Altmetric
Research Article

The influence of flexible/rigid obstacle on flame propagation and blast injuries risk in gas explosion

, , , , , , & show all
Pages 4520-4536 | Received 23 Sep 2022, Accepted 18 Nov 2022, Published online: 24 Apr 2023

References

  • Akkerman, V., and C. K. Law. 2013. Effect of acoustic coupling on power-law flame acceleration in spherical confinement. Physics of Fluids 25 (1):013602. doi:10.1063/1.4773196.
  • Axelsson, H., and J. T. Yelverton. 1996. Chest wall velocity as a predictor of nonauditory blast injury in a complex wave environment. The Journal of Trauma and Acute Care Surgery 40 (3S):31S–7S. doi:10.1097/00005373-199603001-00006.
  • Bakke, J. R., K. V. Wingerden, P. Hoorelbeke, and B. Brewerton. 2010. A study on the effect of trees on gas explosions. Journal of Loss Prevention in the Process Industries 23 (6):878–84. doi:10.1016/j.jlp.2010.08.007.
  • Bass, C. R., M. B. Panzer, K. A. Rafaels, G. Wood, J. Shridharani, and B. Capehart. 2012. Brain injuries from blast. Annals of Biomedical Engineering 40 (1):185–202. doi:10.1007/s10439-011-0424-0.
  • Bellamy, Ronald F, Russ and Zajtchuk. 1989. Conventional warfare:Ballistic, blast and burn injuries[M]. For sale by the Supt. of Docs. Surgeon General Department of the Army.
  • Bowen, I. G., E. R. Fletcher, and D. R. Richmond. 1968. Estimate of man’s tolerance to the direct effects of air blast[R]. Washington, D.C: Defense Technical Information Center.
  • Bychkov, V. V. 1998. Stabilization of the hydrodynamic flame instability by a weak shock. Physics of Fluids 10 (10):2669–75. doi:10.1063/1.869780.
  • Bychkov, V. 1999. Analytical scalings for flame interaction with sound waves. Physics of Fluids 11 (10):3168–73. doi:10.1063/1.870173.
  • Cartwright, J. H. E. 2021. Thermo-kinetic explosions: Safety first or safety last? Physics of Fluids 33 (3):031401. doi:10.1063/5.0037867.
  • Champion, H. R., J. B. Holcomb, and L. A. Young. 2009. Injuries from explosions: Physics, biophysics, pathology, and required research focus. The Journal of Trauma and Acute Care Surgery 66 (5):1468–77. doi:10.1097/TA.0b013e3181a27e7f.
  • Ciccarelli, G., R. T. Johansen, and R. Parravani. 2010. The role of shock–flame interactions on flame acceleration in an obstacle laden channel. Combustion & Flame 157 (11):2125–36. doi:10.1016/j.combustflame.2010.05.003.
  • Clifford, C. B., J. B. Moe, J. J. Jaeger, and J. L. Hess. 1984. Gastrointestinal lesions in lambs due to multiple low-level blast overpressure exposure. Military Medicine 149 (9):491–95. doi:10.1093/milmed/149.9.491.
  • de Córdoba, J. 2022. Cuba hotel explosion: at least nine dead in blast at havana’s hotel saratoga. The Wall Street Journal. https://www.wsj.com/articles/blast-in-cuba-tears-through-havanas-iconic-hotel-saratoga-11651855524?reflink=desktopwebshare_permalink. ISSN 0099-9660.
  • Deiterding, R., et al. 2019. Mechanism of end-gas autoignition induced by flame-pressure interactions in confined space. Physics of Fluids. 31(7):076106. doi:10.1063/1.5099456.
  • Denny, J., A. Dickinson, and G. Langdon. 2021. Defining blast loading ‘zones of relevance’ for primary blast injury research: A consensus of injury criteria for idealised explosive scenarios. Medical Engineering & Physics 93:83–92. doi:10.1016/j.medengphy.2021.05.014.
  • Denny, J., G. Langdon, S. Rigby, A. Dickinson, and J. Batchelor. 2022. A numerical investigation of blast-structure interaction effects on primary blast injury risk and the suitability of existing injury prediction methods. International Journal of Protective Structures 204141962211361. doi:10.1177/20414196221136157.
  • Dodd, K. T., J. T. Yelverton, D. R. Richmond, J. R. Morris, and G. R. Ripple. 1990. Nonauditory injury threshold for repeated intense freefield impulse noise. Journal of Occupational Medicine 1990 (3):260–66. doi:10.1097/00043764-199003000-00015.
  • Duan, Y., F. Long, J. Huang, H. Jia, Y. Bu, and S. Yu. 2022. Effects of porous materials with different thickness and obstacle layout on methane/hydrogen mixture explosion with low hydrogen ratio. International Journal of Hydrogen Energy 47 (63):27237–49. doi:10.1016/j.ijhydene.2022.06.065.
  • Duan, Y., Y. Yang, Y. Li, X. Zhu, H. Jia, and B. Pei. 2021. Experimental study of premixed methane-air gas suppression by sliding porous media with different elasticity coefficients. International Communications in Heat and Mass Transfer 126 (2):105420. doi:10.1016/j.icheatmasstransfer.2021.105420.
  • Dunn-Rankin, D., and M. A. McCann. 2000. Overpressures from nondetonating, baffle-accelerated turbulent flames in tubes. Combustion and Flame 120 (4):504–14. doi:10.1016/S0010-2180(99)00109-1.
  • Friedlander, F. G. 1946. The diffraction of sound pulses. II. diffraction by an infinite wedge. Proceedings of the Royal Society of London 186 (1006):344–51.
  • Gajewski, T., and P. W. Sielicki. 2020. Experimental study of blast loading behind a building corner. Shock Waves 30 (4):385–94. doi:10.1007/s00193-020-00936-1.
  • Gonzalez, M. 1996. Acoustic instability of a premixed flame propagating in a tube. Combustion & Flame 107 (3):245–59. doi:10.1016/S0010-2180(96)00069-7.
  • Johnson, D. L., J. T. Yelverton, W. Hicks, and Doyal, R. 1993. Blast overpressure studies with animals and man: Biological response to complex blast waves[R]. Defense Technical Information Center.
  • Leal, C. A., and G. F. Santiago. 2004. Do tree belts increase risk of explosion for LPG spheres? Journal of Loss Prevention in the Process Industries 17 (3):217–24. doi:10.1016/j.jlp.2004.02.003.
  • Li, Q., G. Ciccarelli, X. Sun, S. Lu, X. Wang, Z. Zhang, M. Xu, and C. Wang. 2018. Flame propagation across a flexible obstacle in a square cross-section channel. International Journal of Hydrogen Energy 43 (36):17480–91. doi:10.1016/j.ijhydene.2018.07.077.
  • Li, Q., S. Lu, M. Xu, Y. Ding, and C. Wang. 2016. Comparison of flame propagation in a tube with a flexible/rigid obstacle. Energy & Fuels 30 (10):8720–26. doi:10.1021/acs.energyfuels.6b01594.
  • Li, Q., X. Sun, X. Wang, Z. Zhang, S. Lu, and C. Wang. 2019. Experimental study of flame propagation across flexible obstacles in a square cross-section channel. International Journal of Hydrogen Energy 44 (7):3944–52. doi:10.1016/j.ijhydene.2018.12.085.
  • Martin, E. M., L. W. C, K. Helmick, L. French, and D. L. Warden. 2008. Traumatic brain injuries sustained in the Afghanistan and Iraq wars. AJN the American Journal of Nursing 108 (4):40–47. doi:10.1097/01.NAJ.0000315260.92070.3f.
  • Masri, A. R., S. S. Ibrahim, N. Nehzat, and A. R. Green. 2000. Experimental study of premixed flame propagation over various solid obstructions. Experimental Thermal and Fluid Science 21 (1–3):109–16. doi:10.1016/S0894-1777(99)00060-6.
  • Ogawa, T., V. N. Gamezo, and E. S. Oran. 2013. Flame acceleration and transition to detonation in an array of square obstacles. Journal of Loss Prevention in the Process Industries 26 (2):355–62. doi:10.1016/j.jlp.2011.12.009.
  • Palies, P., T. Schuller, D. Durox, L. Y. M. Gicquel, and S. Candel. 2011. Acoustically perturbed turbulent premixed swirling flames. Physics of Fluids 23 (3):037101. doi:10.1063/1.3553276.
  • Panzer, M. B., B. ‘Dale’, R. Cameron, K. A. Rafaels, and B. P. Capehart. 2012. Primary blast survival and injury risk assessment for repeated blast exposures. The Journal of Trauma and Acute Care Surgery 72 (2):454–66. doi:10.1097/TA.0b013e31821e8270.
  • Rafaels, K. A., R. ‘Dale’ Bass, M. B. Panzer, R. S. Salzar, W. A. Woods, S. H. Feldman, T. Walilko, R. W. Kent, B. P. Capehart, J. B. Foster, et al. 2012. Brain injury risk from primary blast. The Journal of Trauma and Acute Care Surgery. 73(4):895–901. doi:10.1097/TA.0b013e31825a760e.
  • Salamandra, G. D., T. V. Bazhenova, and I. M. Naboko. 1958. Formation of detonation wave during combustion of gas in combustion tube. Symposium (International) on Combustion 7 (1):851–55. doi:10.1016/S0082-0784(58)80128-9.
  • Shi, X., J. Pan, C. Jiang, J. Li, Y. Zhu, and E. K. Quaye. 2022. Effect of obstacles on the detonation diffraction and subsequent re-initiation. International Journal of Hydrogen Energy 47 (10):6936–54. doi:10.1016/j.ijhydene.2021.12.026.
  • Singh, B., D. K. Dubey, A. Chawla, Mukherjee, S, et al. 2022. Failure analysis of human lower extremity during lateral blast: a computational study[M]//composite materials for extreme loading. Singapore: Springer 355–83.
  • Song, S. A., A. Yq, B. Hx, and Mingyang W. 2020. Effects of concentration and initial turbulence on the vented explosion characteristics of methane-air mixtures - ScienceDirect. Fuel 267. doi:10.1016/j.fuel.2020.117103.
  • Teland, J. A. 2012. Review of blast injury prediction models. 2012/00539 , Kjeller,Norway: Norwegian Defence Research Establishment. https://ffi-publikasjoner.archive.knowledgearc.net/bitstream/handle/20.500.12242/1336/2012%20-%2000539.pdf.
  • Van der Voort, M. M., K. B. Holm, P. O. Kummer, J. A. Teland, J. C. A. M. van Doormaal, and H. P. A. Dijkers. 2016. A new standard for predicting lung injury inflicted by Friedlander blast waves. Journal of Loss Prevention in the Process Industries 40:396–405. doi:10.1016/j.jlp.2016.01.014.
  • Van, D., K. B. Holm, P. O. Kummer, J. A. Teland, J. C. A. M. van Doormaal, and H. P. A. Dijkers. 2016. A new standard for predicting lung injury inflicted by Friedlander blast waves. Journal of Loss Prevention in the Process Industries 40:396–405. doi:10.1016/j.jlp.2016.01.014.
  • Wightman, J. M., and S. L. Gladish. 2001. Explosions and blast injuries. Annals of Emergency Medicine 37 (6):664–78. doi:10.1067/mem.2001.114906.
  • Xiao, H., R. W. Houim, and E. S. Oran. 2017. Effects of pressure waves on the stability of flames propagating in tubes. Proceedings of the Combustion Institute 36 (1):1577–83. doi:10.1016/j.proci.2016.06.126.
  • Xiao, H., and E. S. Oran. 2020. Flame acceleration and deflagration-to-detonation transition in hydrogen-air mixture in a channel with an array of obstacles of different shapes. Combustion and Flame 220:378–93. doi:10.1016/j.combustflame.2020.07.013.
  • Yang, X., M. Yu, K. Zheng, P. Luan, and S. Han. 2020. An experimental study on premixed syngas/air flame propagating across an obstacle in closed duct. Fuel 267:117200. doi:10.1016/j.fuel.2020.117200.
  • Zhang, B. 2016. The influence of wall roughness on detonation limits in hydrogen–oxygen mixture. Combustion and Flame 169:333–39. doi:10.1016/j.combustflame.2016.05.003.
  • Zhang, B., Y. Li, and H. Liu. 2022. Analysis of the ignition induced by shock wave focusing equipped with conical and hemispherical reflectors. Combustion and Flame 236:111763. doi:10.1016/j.combustflame.2021.111763.
  • Zhang, B., and H. Liu. 2017. The effects of large scale perturbation-generating obstacles on the propagation of detonation filled with methane–oxygen mixture. Combustion and Flame 182:279–87. doi:10.1016/j.combustflame.2017.04.025.
  • Zhang, B., H. Liu, and Y. Li. 2019. The effect of instability of detonation on the propagation modes near the limits in typical combustible mixtures. Fuel 253:305–10. doi:10.1016/j.fuel.2019.05.006.
  • Zhang, B., H. Liu, and B. Yan. 2019. Investigation on the detonation propagation limit criterion for methane-oxygen mixtures in tubes with different scales. Fuel 239:617–22. doi:10.1016/j.fuel.2018.11.062.
  • Zhao, W., J. Liang, R. Deiterding, X. Cai, and X. Wang. 2021. Effect of transverse jet position on flame propagation regime. Physics of Fluids 33 (9):091704. doi:10.1063/5.0063363.
  • Zheng, K., M. Yu, L. Zheng, and X. Wen. 2018. Comparative study of the propagation of methane/air and hydrogen/air flames in a duct using large eddy simulation. Process Safety and Environmental Protection 120:45–56. doi:10.1016/j.psep.2018.08.025.
  • Zhu, H., C. Lu, Q. Meng, S. Chen, and Z. Su. 2021. Influence of elastic barrier on explosion propagation and explosion prevention in a duct. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2021:1–14. doi:10.1080/15567036.2021.1912858.
  • Zhu, Y., D. Wang, Z. Shao, X. Zhu, C. Xu, and Y. Zhang. 2020. Investigation on the overpressure of methane-air mixture gas explosions in straight large-scale tunnels. Process Safety and Environmental Protection 135:101–12. doi:10.1016/j.psep.2019.12.022.
  • Zhu, J., Y. Zhang, S. Liu, Youmei, P, and Yuxing, L. 2020. Experimental research on natural gas leakage underwater and burning flame on the water surface. Process Safety and Environmental Protection 139:161–70. doi:10.1016/j.psep.2020.03.038.
  • Zipf, R. K., Jr, V. N. Gamezo, K. M. Mohamed, E. S. Oran, and D. A. Kessler. 2014. Deflagration-to-detonation transition in natural gas–air mixtures. Combustion and Flame 161 (8):2165–76. doi:10.1016/j.combustflame.2014.02.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.