96
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Exergy, energy, and economic analyses of pyramid solar still integrated with solar water heater

, & ORCID Icon
Pages 4804-4821 | Received 12 Dec 2022, Accepted 02 Mar 2023, Published online: 25 Apr 2023

References

  • Abdullah, A. S., W. H. Alawee, S. A. Mohammed, A. Majdi, Z. M. Omara, and F. A. Essa. 2022. Increasing the productivity of modified cords pyramid solar still using electric heater and various wick materials. Process Safety and Environmental Protection 169:169–76. doi:10.1016/j.psep.2022.11.016.
  • Alawee, W. H., S. A. Mohammed, H. A. Dhahad, A. S. Abdullah, Z. M. Omara, and F. A. Essa. 2021. Improving the performance of pyramid solar still using rotating four cylinders and three electric heaters. Process Safety and Environmental Protection 148:950–58. doi:10.1016/j.psep.2021.02.022.
  • Al-Hamadani, A. A. F., and A. H. Yaseen. 2021. A multistage solar still with photovoltaic panels and DC water heater using a pyramid glass cover enhanced by external cooling shower and PCM. Heat Transfer 50 (7):7001–19. doi:10.1002/htj.22214.
  • Alwan, N. T., S. E. Shcheklein, and O. M. Ali. 2021. Evaluation of distilled water quality and production costs from a modified solar still integrated with an outdoor solar water heater. Case Studies in Thermal Engineering 27:101216. doi:10.1016/j.csite.2021.101216.
  • Attia, M. E. H., A. E. Kabeel, M. Abdelgaied, F. A. Essa, and Z. M. Omara. 2021. Enhancement of hemispherical solar still productivity using iron, zinc and copper trays. Solar Energy 216:295–302. doi:10.1016/j.solener.2021.01.038.
  • Bellila, A., M. E. H. Attia, A. E. Kabeel, M. Abdelgaied, K. Harby, and J. Soli. 2021. Productivity enhancement of hemispherical solar still using Al2O3-water-based nanofluid and cooling the glass cover. Applied Nanoscience 11 (4):1127–39. doi:10.1007/s13204-021-01677-y.
  • Dhivagar, R., and M. Mohanraj. 2021. Performance improvements of single slope solar still using graphite plate fins and magnets. Environmental Science and Pollution Research 28 (16):20499–516. doi:10.1007/s11356-020-11737-5.
  • El-Sebaii, A., and A.E.M. Khallaf. 2020. Mathematical modeling and experimental validation for square pyramid solar still. Environmental Science and Pollution Research 27 (26):32283–95. doi:10.1007/s11356-019-07587-5.
  • Essa, F. A., A. S. Abdullah, W. H. Alawee, A. Alarjani, U. F. Alqsair, S. Shanmugan, Z. M. Omara, and M. M. Younes. 2022. Experimental enhancement of tubular solar still performance using rotating cylinder, nanoparticles’ coating, parabolic solar concentrator, and phase change material. Case Studies in Thermal Engineering 29:101705. doi:10.1016/j.csite.2021.101705.
  • Fallahzadeh, R., L. Aref, N. Gholamiarjenaki, Z. Nonejad, and M. Saghi. 2020. Experimental investigation of the effect of using water and ethanol as working fluid on the performance of pyramid-shaped solar still integrated with heat pipe solar collector. Solar Energy 207:10–21. doi:10.1016/j.solener.2020.06.032.
  • Fathy, M., H. Hassan, and M. Salem Ahmed. 2018. Experimental study on the effect of coupling parabolic trough collector with double slope solar still on its performance. Solar Energy 163:54–61. doi:10.1016/j.solener.2018.01.043.
  • Ghandourah, E., H. Panchal, O. Fallatah, H. M. Ahmed, E. B. Moustafa, and A. H. Elsheikh. 2022. Performance enhancement and economic analysis of pyramid solar still with corrugated absorber plate and conventional solar still: A case study. Case Studies in Thermal Engineering 35:101966. doi:10.1016/j.csite.2022.101966.
  • Gnanaraj, S. J. P., and V. Velmurugan. 2022. Experimental investigation on the performance of modified single basin double slope solar stills. International Journal of Ambient Energy 43 (1):206–15. doi:10.1080/01430750.2019.1636861.
  • Goshayeshi, H. R., I. Chaer, M. Yebiyo, and H. F. Öztop. 2022. Experimental investigation on semicircular, triangular and rectangular shaped absorber of solar still with nano-based PCM. Journal of Thermal Analysis and Calorimetry 147 (4):3427–39. doi:10.1007/s10973-021-10728-z.
  • Kabeel, A. E., W. M. El-Maghlany, M. Abdelgaied, and M. M. Abdel-Aziz. 2020. Performance enhancement of pyramid-shaped solar stills using hollow circular fins and phase change materials. Journal of Energy Storage 31:101610. doi:10.1016/j.est.2020.101610.
  • Kabeel, A. E., Y. Taamneh, R. Sathyamurthy, P. Naveen Kumar, A. M. Manokar, and T. Arunkumar. 2019. Experimental study on conventional solar still integrated with inclined solar still under different water depth. Heat Transfer-Asian Research 48 (1):100–14. doi:10.1002/htj.21370.
  • Kumar, S., A. Dubey, and G. N. Tiwari. 2014. A solar still augmented with an evacuated tube collector in forced mode. Desalination 347:15–24. doi:10.1016/j.desal.2014.05.019.
  • Manoj Kumar, P., D. Sudarvizhi, K. B. Prakash, A. M. Anupradeepa, S. Boomiha Raj, S. Shanmathi, K. Sumithra, and S. Surya. 2021. Investigating a single slope solar still with a nano-phase change material. Materials Today: Proceedings 45:7922–25. doi:https://doi.org/10.1016/j.matpr.2020.12.804.
  • Manokar, A. M. 2018. Experimental investigation on pyramid solar still in passive and active mode. Heat and Mass Transfer 55:1045–1058.
  • Modi, K. V., and K. H. Nayi. 2020. Efficacy of forced condensation and forced evaporation with thermal energy storage material on square pyramid solar still. Renewable Energy 153:1307–19. doi:10.1016/j.renene.2020.02.095.
  • Muthu Manokar, A., Y. Taamneh, A. E. Kabeel, D. Prince Winston, P. Vijayabalan, D. Balaji, R. Sathyamurthy, S. Padmanaba Sundar, and D. Mageshbabu. 2020. Effect of water depth and insulation on the productivity of an acrylic pyramid solar still – an experimental study. Groundwater for Sustainable Development 10:100319. doi:10.1016/j.gsd.2019.100319.
  • Parsa, S. M., A. Yazdani, H. Dhahad, W. H. Alawee, S. Hesabi, F. Norozpour, D. Javadi Y, H. M. Ali, and M. Afrand. 2021. Effect of Ag, Au, TiO2 metallic/metal oxide nanoparticles in double-slope solar stills via thermodynamic and environmental analysis. Journal of Cleaner Production 311:127689. doi:10.1016/j.jclepro.2021.127689.
  • Prakash, A., and R. Jayaprakash. 2021. Performance evaluation of stepped multiple basin pyramid solar still. Materials Today: Proceedings 45:1950–56. doi:10.1016/j.matpr.2020.09.227.
  • Rahbar, N., A. Asadi, and E. Fotouhi-Bafghi. 2018. Performance evaluation of two solar stills of different geometries: Tubular versus triangular: Experimental study, numerical simulation, and second law analysis. Desalination 443:44–55. doi:10.1016/j.desal.2018.05.015.
  • Rahbar, N., and J. A. Esfahani. 2012. Experimental study of a novel portable solar still by utilizing the heatpipe and thermoelectric module. Desalination 284:55–61. doi:10.1016/j.desal.2011.08.036.
  • Raj Kamal, M. D., B. Parandhaman, B. Madhu, D. Magesh Babu, and R. Sathyamurthy. 2021. Experimental analysis on single and double basin single slope solar still with energy storage material and external heater. Materials Today: Proceedings 46:10288–92. doi:10.1016/j.matpr.2020.12.444.
  • Sambare, R. 2014. Enhancement of heat transfer in solar collectors with nanofluid: A Review. International Journal of Engineering Research & Technology 3:480–84.
  • Sambare, R. K., S. K. Dewangan, P. K. Gupta, and S. Joshi. 2022a. Augmenting the productivity of tubular solar still using low-cost energy storage materials. Environmental Science and Pollution Research 29 (52):78739–56. doi:https://doi.org/10.1007/s11356-022-21324-5.
  • Sambare, R. K., S. K. Dewangan, P. K. Gupta, and S. Joshi. 2022b. Energy, exergy and economic analyses of Tubular solar still with various transparent cover materials. Process Safety and Environmental Protection 168:1101–08. doi:10.1016/j.psep.2022.10.064.
  • Sambare, R. K., S. K. Dewangan, P. K. Gupta, and S. S. Joshi. 2021. Exergy and thermo-economic analyses of various tubular solar still configurations for improved performance. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 43 (21):2672–91. doi:https://doi.org/10.1080/15567036.2021.1887977.
  • Sambare, R., S. Joshi, and N. Kanojiya. 2023. Improving the freshwater production from tubular solar still using sensible heat storage materials. Thermal Science and Engineering Progress 38:101676. doi:10.1016/j.tsep.2023.101676.
  • Sambare, R., T. Sathe, N. Kanojiya, N. Sunheriya, and S. Mahakalkar. 2021. Experimental investigation on enhancement of convective heat transfer coefficient in parabolic collector using nanofluids. Applied Solar Energy (English Transl Geliotekhnika) 57 (2):160–69. doi:10.3103/S0003701X21020110.
  • Saravanan, A., and M. Murugan. 2020. Performance evaluation of square pyramid solar still with various vertical wick materials – an experimental approach. Thermal Science and Engineering Progress 19:100581. doi:10.1016/j.tsep.2020.100581.
  • Sasikumar, C., A. M. Manokar, M. Vimala, D. Prince Winston, A. E. Kabeel, R. Sathyamurthy, and A. J. Chamkha. 2020. Experimental studies on passive inclined solar panel absorber solar still. Journal of Thermal Analysis and Calorimetry 139 (6):3649–60. doi:https://doi.org/10.1007/s10973-019-08770-z.
  • Sharma Sn& GSRKR, N. 2021. Effect of copper fins on fresh water productivity of pyramid solar still. Recent Trends Thermal Science and Engineering 83–91. doi:10.1007/978-981-16-3132-0_9.
  • Sharshir, S. W., M. Abd Elaziz, and M. R. Elkadeem. 2020. Enhancing thermal performance and modeling prediction of developed pyramid solar still utilizing a modified random vector functional link. Solar Energy 198:399–409. doi:10.1016/j.solener.2020.01.061.
  • Sharshir, S. W., A. W. Kandeal, A. M. Algazzar, Eldesoukey, A., El-Samadony, M. O. A, Hussien, A. A. 2022. Process Safety and Environmental Protection 4-E analysis of pyramid solar still augmented with external condenser, evacuated tubes, nanofluid and ultrasonic foggers: A comprehensive study. Process Safety and Environmental Protection 164:408–417.
  • Sharshir, S. W., M. A. Rozza, M. Elsharkawy, Youns, M. M, Abou-Taleb, F., Kabeel, A. E. (2022). Performance evaluation of a modified pyramid solar still employing wick, reflectors, glass cooling and TiO 2 nanomaterial. Desalination 539. doi:10.1016/j.desal.2022.115939
  • Sharshir, S. W., M. A. Rozza, A. Joseph, A. W. Kandeal, A. A. Tareemi, F. Abou-Taleb, and A. E. Kabeel. 2022. A new trapezoidal pyramid solar still design with multi thermal enhancers. Applied Thermal Engineering 213:47–49. doi:10.1016/j.applthermaleng.2022.118699.
  • Subramanian, R. S., G. Kumaresan, R. Ajith, U. Sabarivasan, K. K. Gowthamaan, and S. Anudeep. 2021. Performance analysis of modified solar still integrated with flat plate collector. Materials Today: Proceedings 45:1382–87. doi:https://doi.org/10.1016/j.matpr.2020.06.409.
  • Tripathi, R., and G. N. Tiwari. 2006. Thermal modeling of passive and active solar stills for different depths of water by using the concept of solar fraction. Solar Energy 80 (8):956–67. doi:https://doi.org/10.1016/j.solener.2005.08.002.
  • Yan, T., G. Xie, W. Chen, Wu, Z., Xu, J., Liu, Y. 2021. Experimental study on three-effect tubular solar still under vacuum and immersion cooling. Desalination 515:115211. doi:10.1016/j.desal.2021.115211.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.