90
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effects of activated carbon particle size on the formation of hydrate in fully/partially saturated liquid phase system

, , ORCID Icon, , , & show all
Pages 4839-4852 | Received 17 May 2022, Accepted 31 Oct 2022, Published online: 01 May 2023

References

  • Abdi-Khanghah, M., M. Adelizadeh, Z. Naserzadeh, H. Barati, and Z. Zhang. 2018. Methane hydrate formation in the presence of ZnO nanoparticle and SDS: Application to transportation and storage. Journal of Natural Gas Science & Engineering 54:120–130. doi:10.1016/j.jngse.2018.04.005.
  • Ahn, J., and J. Jung. 2017. Effects of fine particles on thermal conductivity of mixed silica sands. Applied Sciences 7:650. doi:10.3390/app7070650.
  • Babu, P., Y. D, P. Linga, A. Palmer, B. C. Khoo, T. S. Tan, and P. Rangsunvigit. 2013. Morphology of methane hydrate formation in porous media. Energy & Fuels 27 (6):3364–72. doi:10.1021/ef4004818.
  • Bagherzadeh, S. A., I. L. Moudrakovski, J. A. Ripmeester, and P. Englezos. 2011a. Magnetic resonance imaging of gas hydrate formation in a bed of silica sand particles. Energy & Fuels 25:3083–92. doi:10.1021/ef200399a.
  • Bagherzadeh, S. A., I. L. Moudrakovski, J. A. Ripmeester, and P. Englezos. 2011b. Magnetic resonance imaging of gas hydrate formation in a bed of silica sand particles. Energy & Fuels 25:3083–92. doi:10.1021/ef200399a.
  • Bello-Palacios, A., P. Fotland, and S. Almenningen. 2022. Effects of methane hydrates on two-phase relative permeability in sandstone: Numerical simulation of laboratory experiments. Journal of Petroleum Science & Engineering 208:109606. doi:10.1016/j.petrol.2021.109606.
  • Benmesbah, F. D., L. Ruffine, P. Clain, V. Osswald, O. Fandino, L. Fournaison, and A. Delahaye. 2020. Methane hydrate formation and dissociation in sand media: Effect of water saturation, gas flowrate and particle size. Energies 13:5200. doi:10.3390/en13195200.
  • Bhattacharjee, G., V. Barmecha, D. Pradhan, R. Naik, K. Zare, R. B. Mawlankar, S. G. Dastager, O. S. Kushwaha, and R. Kumar. 2017. The biosurfactant surfactin as a kinetic promoter for methane hydrate formation. Energy Procedia 105:5011–17. doi:10.1016/j.egypro.2017.03.1050.
  • Casco, M. E., F. Rey, J. L. Jordá, S. Rudi, F. Fauth, M. Martínez-Escandell, F. Rodríguez-Reinoso, E. V. Ramos-Fernández, and J. Silvestre-Albero. 2018. Paving the way for methane hydrate formation on metal–organic frameworks (MOFs). Chemical Science 7 (6):3658–66. doi:10.1039/C6SC00272B.
  • Cheng, Z., S. Wang, N. Xu, W. Liu, J. N. Zheng, J. Zhao, L. Jiang, and J. -N. Zheng. 2021. Quantitative analysis of methane hydrate formation in size-varied porous media for gas storage and transportation application. Fuel 301:121021. doi:10.1016/j.fuel.2021.121021.
  • Cheng, Z., S. Wang, N. Xu, W. Liu, Y. Zheng, J. Zhao, L. Jiang, and J. -N. Zheng. 2021. Quantitative analysis of methane hydrate formation in size-varied porous media for gas storage and transportation application. Fuel 301:121021. doi:10.1016/j.fuel.2021.121021.
  • Chong, Z. R., S. Yang, P. Babu, P. Linga, and X. S. Li. 2016. Review of natural gas hydrates as an energy resource: Prospects and challenges. Applied Energy 162:1633–52. doi:10.1016/j.apenergy.2014.12.061.
  • Chong, Z. R., M. Yang, B. C. Khoo, and P. Linga. 2015. Size effect of porous media on methane hydrate formation and dissociation in an excess gas environment. Industrial & Engineering Chemistry Research 55 (29):7981–91. doi:10.1021/acs.iecr.5b03908.
  • Dicharry, C., C. Duchateau, H. Asbaï, and D. Broseta. 2013. Carbon dioxide gas hydrate crystallization in porous silica gel particles partially saturated with a surfactant solution. Chemical Engineering Science 98:88–97. doi:10.1016/j.ces.2013.05.015.
  • Ganji, H., M. Manteghian, and H. R. Mofrad. 2007. Effect of mixed compounds on methane hydrate formation and dissociation rates and storage capability. Fuel Processing Technology 88 (9):891–95. doi:10.1016/j.fuproc.2007.04.010.
  • Govindaraj, V., D. Mech, G. Pandey, J. S. Sangwai, and J. S. Sangwai. 2015. Kinetics of methane hydrate formation in the presence of activated carbon and nano-silica suspensions in pure water. Journal of Natural Gas Science and Engineering 26:810–18. doi:10.1016/j.jngse.2015.07.011.
  • Gudala, M., S. K. Govindarajan, and A. Mandal. 2019. Chemical affinity modeling of methane hydrate formation and dissociation in the presence of surfactants. Energy & Fuels 34 (1):319–31. doi:10.1021/acs.energyfuels.9b03777.
  • Hassanpouryouzband, A., E. Joonaki, M. V. Farahani, S. Takeya, C. Ruppel, J. Yang, N. J. English, J. M. Schicks, K. Edlmann, H. Mehrabian, et al. 2020. Gas hydrates in sustainable chemistry. Chemical Society Reviews 49 (15):5225–309. doi:10.1039/C8CS00989A.
  • Heydari, A., and K. Peyvandi. 2019. Role of metallic porous media and surfactant on kinetics of methane hydrate formation and capability of gas storage. Journal of Petroleum Science and Engineering 181:106235. doi:10.1016/j.petrol.2019.106235.
  • Javanmardi, J., K. Nasrifar, S. H. Najibi, and M. Moshfeghian. 2005. Economic evaluation of natural gas hydrate as an alternative for natural gas transportation. Applied Thermal Engineering 25:1708–23. doi:10.1016/j.applthermaleng.2004.10.009.
  • Jiang, L. L., A. R. Li, J. F. Xu, and Y. J. Liu. 2016. Effects of SDS and SDBS on CO 2 hydrate formation, induction time, storage capacity and stability at 274.15 K and 5.0 MPa. ChemistrySelect 1 (19):6111–14. doi:10.1002/slct.201601038.
  • Jing, Z., Z. A. Peng, C. Yw, and A. Qw. 2021. Experimental research on methane hydrate formation in porous media based on the low-field NMR technique. Chemical Engineering Science 244:116804. doi:10.1016/j.ces.2021.116804.
  • Jun, Y., O. Motoi, K. Masato, K. Akira, K. Yoshihiro, J. Yusuke, J. Junbong, W. F. Waite, K. Pushpendra, and T. Norio. 2018. Permeability variation and anisotropy of gas hydrate-bearing pressure-core sediments recovered from the Krishna–Godavari Basin, offshore India. Marine & Petroleum Geology 108:524–36.
  • Kakati, H., A. Mandal, and S. Laik. 2016. Promoting effect of Al2O3/ZnO-based nanofluids stabilized by SDS surfactant on CH4+C2H6+C3H8 hydrate formation. Journal of Industrial & Engineering Chemistry 35:357–68. doi:10.1016/j.jiec.2016.01.014.
  • Kang, S.P., and J.W. Lee. 2010a. Kinetic behaviors of CO2 hydrates in porous media and effect of kinetic promoter on the formation kinetics. Chemical Engineering Science 65 (5):1840–45. doi:10.1016/j.ces.2009.11.027.
  • Kang, S. P., and J. W. Lee. 2010b. Formation characteristics of synthesized natural gas hydrates in meso-and macroporous silica gels. The Journal of Physical Chemistry B 114 (20):6973–78. doi:10.1021/jp100812p.
  • Kang, S. -P., J. -W. Lee, and H. -J. Ryu. 2008. Phase behavior of methane and carbon dioxide hydrates in meso-and macro-sized porous media. Fluid Phase Equilibria 274 (1–2):68–72. doi:10.1016/j.fluid.2008.09.003.
  • Kawasaki, T., T. Ukita, T. Fujii, S. Noguchi, and J. A. Ripmeester. 2011. Particle size effect on the saturation of methane hydrate in sediments - Constrained from experimental results. Marine and Petroleum Geology 28:1801–05. doi:10.1016/j.marpetgeo.2010.11.007.
  • Kogure, T., K. Kitamura, T. Yamada, O. Nishizawa, and Z. Xue. 2011. Relative permeability of water and supercritical CO2 system under steady-state flow conditions in porous sandstones. Journal of Geography (Chigaku Zasshi) 120 (6):944–59. doi:10.5026/jgeography.120.944.
  • Kvamme, B., S. A. Aromada, and N. Saeidi. 2019. Heterogeneous and homogeneous hydrate nucleation in CO2/water systems. Journal of Crystal Growth 522:160–74. doi:10.1016/j.jcrysgro.2019.06.015.
  • Lee, J. M., S. J. Cho, J. D. Lee, P. Linga, K. C. Kang, and J. Lee. 2015. Insights into the kinetics of methane hydrate formation in a stirred tank reactor by InSitu Raman spectroscopy. Energy Technology 3:925–34. doi:10.1002/ente.201500066.
  • Li, X. Y., X. S. Li, Y. Wang, G. Li, Y. Zhang, H. Q. Hu, K. Wan, and H. P. Zeng. 2021. Influence of particle size on the heat and mass transfer characteristics of methane hydrate formation and decomposition in porous media. Energy & Fuels 35 (3):2153–64. doi:10.1021/acs.energyfuels.0c03812.
  • Linga, P., N. Daraboina, J. A. Ripmeester, and P. Englezos. 2012. Enhanced rate of gas hydrate formation in a fixed bed column filled with sand compared to a stirred vessel. Chemical Engineering Science 68:617–23. doi:10.1016/j.ces.2011.10.030.
  • Li, Z., X. Tian, Z. Li, J. Xu, H. Zhang, and D. Wang. 2020. Experimental study on growth characteristics of pore-scale methane hydrate. Energy Reports 6:933–43. doi:10.1016/j.egyr.2020.04.017.
  • Liu, F. P., A. R. Li, J. Wang, and Z. D. Luo. 2021. Iron-based ionic liquid ([Bmim][fecl4]) as a promoter of CO2 hydrate nucleation and growth. Energy 214:119034. doi:10.1016/j.energy.2020.119034.
  • Liu, Z., Z. Pan, Z. Zhang, L. Peisheng, L. Shang, and L. Bingfan. 2018. Effect of porous media and sodium dodecyl sulphate complex system on methane hydrate formation. Energy & Fuels 32 (5):5736–49. doi:10.1021/acs.energyfuels.8b00041.
  • Lv, J., L. Jiang, H. Mu, K. Xue, Z. Cheng, S. Wang, and Y. Liu. 2021. MRI investigation of hydrate pore habits and dynamic seepage characteristics in natural gas hydrates sand matrix - ScienceDirect. Fuel 303:121287. doi:10.1016/j.fuel.2021.121287.
  • Lv, T., X. Li, Z. Chen, C. Xu, Y. Zhang, and J. Cai. 2019. Effect of fulvic acid and sodium chloride on the phase equilibrium of methane hydrate in mixed sand–clay sediment. Journal of Chemical & Engineering Data 64:632–39. doi:10.1021/acs.jced.8b00884.
  • Mandal, A., and S. Laik. 2008. Effect of the promoter on gas hydrate formation and dissociation. Energy & Fuels 22:2527–32. doi:10.1021/ef800240n.
  • Misyura, S. Y., and I. G. Donskoy. 2019. Ways to improve the efficiency of carbon dioxide utilization and gas hydrate storage at low temperatures - ScienceDirect. Journal of CO2 Utilization 34:313–24. doi:10.1016/j.jcou.2019.07.010.
  • Mohebbi, V., A. Naderifar, R. M. Behbahani, and M. Moshfeghian. 2012. Investigation of kinetics of methane hydrate formation during isobaric and isochoric processes in an agitated reactor. Chemical Engineering Science 76:58–65. doi:10.1016/j.ces.2012.04.016.
  • Oignet, J., H. M. Hoang, V. Osswald, A. Delahaye, L. Fournaison, and P. Haberschill. 2017. Experimental study of convective heat transfer coefficients of CO 2 hydrate slurries in a secondary refrigeration loop. Applied Thermal Engineering 118:630–37. doi:10.1016/j.applthermaleng.2017.02.117.
  • Pasieka, J., S. Coulombe, and P. Servio. 2013. Investigating the effects of hydrophobic and hydrophilic multi-wall carbon nanotubes on methane hydrate growth kinetics. Chemical Engineering Science 104:998–1002. doi:10.1016/j.ces.2013.10.037.
  • Qin, Y., R. Bao, L. Shang, L. Zhou, and Z. Liu. 2021. Growth and occurrence characteristics of methane hydrate in a complex system of silica sand and sodium dodecyl sulfate. Chemical Engineering Science 249:117349. doi:10.1016/j.ces.2021.117349.
  • Qin, Y., R. Bao, L. Shang, L. Zhou, L. Meng, C. Zang, and X. Sun. 2021. Effects of particle size and types of porous media on the formation and occurrence of methane hydrate in complex systems. Energy & Fuels: An American Chemical Society Journal 36 (1):655–68. doi:10.1021/acs.energyfuels.1c03378.
  • Qin, Y., Z. Pan, Z. Liu, L. Shang, and L. Zhou. 2021. Influence of the particle size of porous media on the formation of natural gas hydrate: A review. Energy & Fuels 35:11640–64. doi:10.1021/acs.energyfuels.1c00936.
  • Qin, Y., L. Shang, Z. Lv, Z. Liu, J. He, and X. Li. 2022. Rapid formation of methane hydrate in environment-friendly leucine-based complex systems. Energy 254:124214. doi:10.1016/j.energy.2022.124214.
  • Siangsai, A., P. Rangsunvigit, B. Kitiyanan, S. Kulaprathipanja, and P. Linga. 2015. Investigation on the roles of activated carbon particle sizes on methane hydrate formation and dissociation. Chemical Engineering Ence 126:383–89. doi:10.1016/j.ces.2014.12.047.
  • Sloan, Jr. E. D., and C. Koh. 2008. Clathrate hydrates of natural gases. Third ed. Clathrate Hydrates of Natural Gas.
  • Stoporev, A. S., A. P. Semenov, V. I. Medvedev, B. I. Kidyarov, A. Y. Manakov, and V. A. Vinokurov. 2018. Nucleation of gas hydrates in multiphase systems with several types of interfaces. Journal of Thermal Analysis and Calorimetry 134:783–95. doi:10.1007/s10973-018-7352-2.
  • Sujith, K. 2022. Effect of methanol as an amphiphile on water structuring around a hydrate forming gas molecule: Insights from molecular dynamics simulations. Journal of Molecular Liquids 361:119628. doi:10.1016/j.molliq.2022.119628.
  • Tian, Y., Y. Li, H. An, J. Ren, and J. Su. 2017. Kinetics of methane hydrate formation in an aqueous solution with and without kinetic promoter (SDS) by spray reactor. Journal of Chemistry 2017:1–5. doi:10.1155/2017/5208915.
  • Wang, Y., J. C. Feng, X. S. Li, Y. Zhang, and Z. Y. Chen. 2018. Fluid flow mechanisms and heat transfer characteristics of gas recovery from gas-saturated and water-saturated hydrate reservoirs. International Journal of Heat & Mass Transfer 118:1115–27. doi:10.1016/j.ijheatmasstransfer.2017.11.081.
  • Wang, W., Z. Huang, H. Chen, Z. Tan, C. Chen, and L. Sun. 2012. Methane hydrates with a high capability and a high formation rate promoted by biosurfactants. Chemical Communications 48 (95):11638–40. doi:10.1039/c2cc35603a.
  • Wang, Y., X. Kou, J. C. Feng, X. S. Li, and Y. Zhang. 2020. Sediment deformation and strain evaluation during methane hydrate dissociation in a novel experimental apparatus. Applied Energy 262:114397. doi:10.1016/j.apenergy.2019.114397.
  • Wu, C., S. Fan, Y. Wang, X. Lang, and G. Li. 2022. Experiment and observation of methane hydrate formation in silty clay sediments of the South China sea with 50–85% water saturation. Energy & Fuels 36:10529–40. doi:10.1021/acs.energyfuels.2c01548.
  • Wu, Y., L. Y. Shang, Z. Pan, Y. F. Xuan, F. M. Baena-Moreno, and Z. E. Zhang. 2021. Gas hydrate formation in the presence of mixed surfactants and alumina nanoparticles. Journal of Natural Gas Science and Engineering 94:104049. doi:10.1016/j.jngse.2021.104049.
  • Xie, N., Z. Liu, S. Yang, and C. Tan. 2020. Energy efficiency analysis of postcombustion hydrate-based CO2 capture with tetrahydrofuran and tetra-n-butylammonium bromide. Industrial and Engineering Chemistry Research 59 (2):802–13. doi:10.1021/acs.iecr.9b04744.
  • Yan, L., G. Chen, W. Pang, and J. Liu. 2005. Experimental and modeling study on hydrate formation in wet activated carbon. The Journal of Physical Chemistry B 109:6025–30. doi:10.1021/jp045679y.
  • Yang, M., Y. Song, X. Ruan, Y. Liu, J. Zhao, and Q. Li. 2012. Characteristics of CO2 hydrate formation and dissociation in glass beads and silica gel. Energies 5:925–37. doi:10.3390/en5040925.
  • Yu, Z., X. Li, Y. Wang, Z. Chen, and L. Gang. 2017. Methane hydrate formation in marine sediment from South China sea with different water saturations. Energies 10 (4):561. doi:10.3390/en10040561.
  • Zang, X. Y., D. Q. Liang, and W. U. Nengyou. 2013. Gas hydrate formation in fine sand. Science China Earth Sciences 56 (4):549–56. doi:10.1007/s11430-012-4546-5.
  • Zhang, Y., X. S. Li, Z. Y. Chen, Z. M. Xia, W. Yi, and L. Gang. 2018. Experimental and modeling study on controlling factor of methane hydrate formation in silica gels - ScienceDirect. Applied Energy 225:827–34. doi:10.1016/j.apenergy.2018.05.059.
  • Zhang, Z., Z. Liu, Z. Pan, F. M. Baena-Moreno, and M. R. Soltanian. 2020. Effect of porous media and its distribution on methane hydrate formation in the presence of surfactant. Applied Energy 264:114373. doi:10.1016/j.apenergy.2019.114373.
  • Zhang, G., B. Liu, L. Xu, R. Zhang, Y. He, and F. Wang. 2021. How porous surfaces influence the nucleation and growth of methane hydrates. Fuel 291:120142. doi:10.1016/j.fuel.2021.120142.
  • Zhang, W., H. -Y. Li, C. -G. Xu, Z. -Y. Huang, and X. -S. Li. 2022. Research progress on the effects of nanoparticles on gas hydrate formation. RSC Advances 12:20227–38. doi:10.1039/D2RA03376C.
  • Zhang, S. W., L. Y. Shang, L. Zhou, and Z. B. Lv. 2022. Hydrate deposition model and flow assurance technology in gas-dominant pipeline transportation systems: A review. Energy & Fuels 36 (4):1747–75. doi:10.1021/acs.energyfuels.1c03812.
  • Zhang, G., X. Shi, R. Zhang, K. Chao, and F. Wang. 2020. Promotion of activated carbon on the nucleation and growth kinetics of methane hydrates. Frontiers in Chemistry 8:526101. doi:10.3389/fchem.2020.526101.
  • Zhang, L., M. Sun, L. Sun, T. Yu, Y. Zhao, J. Zhao, L. Yang, and H. Dong. 2019. In-situ observation for natural gas hydrate in porous medium: Water performance and formation characteristic. Magnetic Resonance Imaging 65:166–74. doi:10.1016/j.mri.2019.09.002.
  • Zhang, X., M. Zhang, P. Li, J. Li, Y. Wang, and Q. Wu. 2022. Cooperative effect of surfactant and porous media on Co2 hydrate formation and capability of gas storage. Social Science Electronic Publishing 329:125494. doi:10.1016/j.fuel.2022.125494.
  • Zhang, R., G. Zhang, and F. Wang. 2021. Hydrate formation loaded by an activated carbon bed in 3D-Printed containers. Energy & Fuels 35:15675–83. doi:10.1021/acs.energyfuels.1c02348.
  • Zhang, B., J. Zheng, Z. Yin, C. Liu, Q. Wu, Q. Wu, C. Liu, X. Gao, and Q. Zhang. 2018. Methane hydrate formation in mixed-size porous media with gas circulation: Effects of sediment properties on gas consumption, hydrate saturation and rate constant. Fuel 233:94–102. doi:10.1016/j.fuel.2018.06.055.
  • Zhen, P. A., A. Zl, B. Zz, C. Ls, and D. Sm. 2018. Effect of silica sand size and saturation on methane hydrate formation in the presence of SDS. Journal of Natural Gas Science and Engineering 56:266–80. doi:10.1016/j.jngse.2018.06.018.
  • Zhong, D. L., S. Y. He, D. J. Sun, and C. Yang. 2014. Comparison of methane hydrate formation in stirred reactor and porous media in the presence of SDS. Energy Procedia 61:1573–76. doi:10.1016/j.egypro.2014.12.174.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.