106
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Effects of oxidation degree and antioxidant addition on the carbon deposition tendency of jatropha biodiesel

, , , , ORCID Icon, & show all
Pages 4917-4930 | Received 30 Sep 2022, Accepted 05 Apr 2023, Published online: 01 May 2023

References

  • Aghbashlo, M., W. X. Peng, M. Tabatabaei, S. A. Kalogirou, S. Soltanian, H. Hosseinzadeh-Bandbafha, O. Mahian, and S. S. Lam. 2021 Jul. Machine learning technology in biodiesel research: A review [Review]. Progress in Energy and Combustion Science 85:112. doi:10.1016/j.pecs.2021.100904.
  • Almena, C., O. L. Esperilla, F. M. Manzanero, Duarte, Y.M., Toscano, L.C.Q. and Wolff, G. 2012. Internal diesel injector deposits: Sodium carboxylates of C12 succinic acids and C16 and C18 fatty acids [Article]. SAE Technical Papers:9. doi:10.4271/2012-01-1689.
  • Chiong, M. C., C. T. Chong, J. H. Ng, M. -V. Tran, S. S. Lam, A. Valera-Medina, and M. N. Mohd Jaafar. 2019 Aug. Combustion and emission performances of coconut, palm and soybean methyl esters under reacting spray flame conditions [Article]. Journal of the Energy Institute 92 (4):1034–44. doi:10.1016/j.joei.2018.07.003.
  • Dallanegra, R., and R. Caprotti. 2014. Chemical composition of ashless polymeric internal diesel injector deposits SAE technical papers. 2014 October13. doi:10.4271/2014-01-2728.
  • Du, R., M. Huang, and Y. Zheng . 2018. The research on optimization of flame tube welding process reliability based on numerical simulation [Conference Paper]. 18th IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). July 16-20. 639–40. doi:10.1109/qrs-c.2018.00113.
  • Hoang, A. T., and A. T. Le. 2019 Mar. A review on deposit formation in the injector of diesel engines running on biodiesel [Review]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 41 (5):584–99. doi:10.1080/15567036.2018.1520342.
  • Hoang, A. T., and V. V. Pham. 2018. Impact of Jatropha oil on engine performance, emission characteristics, deposit formation, and lubricating oil degradation combustion ence and technology. Combustion Science and Technology 191 (3):1–16. doi:10.1080/00102202.2018.1504292.
  • Hosseinzadeh-Bandbafha, H., D. Kumar, B. Singh, H. Shahbeig, S. S. Lam, M. Aghbashlo, and M. Tabatabaei. 2022 Jul. Biodiesel antioxidants and their impact on the behavior of diesel engines: A comprehensive review [Review]. Fuel Processing Technology 232:20. doi:10.1016/j.fuproc.2022.107264.
  • Jim, B., Cook, S. Stephen, and P. Richards. 2013. Sodium contamination of diesel fuel, its interaction with fuel additives and the resultant effects on filter plugging and injector fouling [Article]. Sae International Journal of Fuels & Lubricants 6:826–38. doi:10.4271/2013-01-2687.
  • Jun, D., J. Wang, X. Cheng, Huang, Z., and Zhang, J. 2021. Preparation method and prospect of polyether amine as the gasoline detergent [Aritcle]. Petrochemical Technology Z1:63–69. doi:10.3969/j.issn.1000-8144.2021.z1.012.
  • Leonardo, R. S., J. Dweck, and M. L. M. Valle. 2020 Dec. Effect of the aging temperature on soybean biodiesel oxidation, quantifying the formed gums and sediments by thermogravimetry [Article]. Journal of Thermal Analysis and Calorimetry 142 (5):2049–59. doi:10.1007/s10973-020-09900-8.
  • Liang, Q., S. Wang, and K. Liu. 2017. Mechanism exploration of forming carbon deposit for Jatropha oilused directly as diesel fuel [Article]. China Oils and Fats 42 (12):58–61. doi:10.3969/j.issn.1003-7969.2017.12.015.
  • Liu, Z. W., F. S. Li, J. X. Shen, and H. Wang. 2019 Oct. Effect of oxidation of Jatropha curcas-derived biodiesel on its lubricating properties [Article]. Energy for Sustainable Development 52:33–39. doi:10.1016/j.esd.2019.06.003.
  • Nadine, O., Oberender, and N. Herbert. 2016. Characterization of damaging biodiesel deposits and biodiesel samples by infrared spectroscopy (ATR-FTIR) and mass spectrometry (TOF-SIMS) [Aritcle]. Sae International Journal of Fuels & Lubricants 9 (3):717–24. doi:10.4271/2016-01-9078.
  • Ni, Z., F. Li, G. Han, Wang, S., Sui, M., Wang, W., and Chen, D. 2019. Analysis of kinematic viscosity changes of jatropha curcas biodiesel before and after oxidation [Article]. Journal of the Chinese Cereals and Oils Association 34 (7):78–83. doi:10.3969/j.issn.1003-0174.2019.07.014.
  • Palani, Y., C. Devarajan, D. Manickam, and S. THANIKODI. 2022 Feb. Performance and emission characteristics of biodiesel-blend in diesel engine: A review [Review]. Environmental Engineering Research 27 (1):12. doi:10.4491/eer.2020.338.
  • Paul, L., Gail, S. Sandro, J. M. Kientz, G. Benoist, P. Downes, and C. Daveau. 2012. Fuel quality and diesel injector deposits [Article]. Sae International Journal of Fuels & Lubricants 5 (3):1187–98. doi:10.4271/2012-01-1693.
  • Pullen, J., and K. Saeed. 2012 Oct. An overview of biodiesel oxidation stability [Review]. Renewable and Sustainable Energy Reviews 16 (8):5924–50. doi:10.1016/j.rser.2012.06.024.
  • Reid, J., and J. Barker. 2013. Understanding Polyisobutylene Succinimides (PIBSI) and internal diesel injector deposits [Article]. SAE Technical Papers 11. doi:10.4271/2013-01-2682.
  • Shabnam, S., Q. Mao, A. C. T. van Duin, and K. H. Luo. 2019 May. Evaluation of the effect of nickel clusters on the formation of incipient soot particles from polycyclic aromatic hydrocarbons via ReaxFF molecular dynamics simulations [Article]. Physical Chemistry Chemical Physics: PCCP 21 (19):9865–75. doi:10.1039/c9cp00354a.
  • Shams Esfandabadi, Z., M. Ranjbari, and S. D. Scagnelli. 2022. The imbalance of food and biofuel markets amid Ukraine-Russia crisis: A systems thinking perspective. Biofuel Research Journal 9 (2):1640–47. doi:10.18331/brj2022.9.2.5.
  • Singh, R. K., A. Sarkar, and J. P. Chakraborty. 2019 Oct. Influence of alternate fuels on the performance and emission from internal combustion engines and soot particle collection using thermophoretic sampler: A comprehensive review [Review]. Waste and Biomass Valorization. 10 (10):2801–23. doi:10.1007/s12649-018-0338-2.
  • Sugiarto, B., M. T. Suryantoro, S. Yubaidah, and M. I. Attharik. 2018. The effect of antioxidant additives on the growth of deposits on the use of biodiesel fuel (B100) at certain temperatures [Article]. IOP Conference Series: Earth and Environmental Science 105 (1):012075. doi:10.1088/1755-1315/105/1/012075.
  • Sui, M., F. Li, and S. Wang. 2019. Effect of oxidation degree and acid value on free ion content in biodiesel [Article]. Petrochemical Technology 48 (3):254–60. doi:10.3969/j.issn.1000-8144.2019.03.005.
  • Urzedowska, W., and Z. Stepien. 2016 Feb. Prediction of threats caused by high FAME diesel fuel blend stability for engine injector operation [Article]. Fuel Processing Technology 142:403–10. doi:10.1016/j.fuproc.2015.11.001.
  • Venkataraman, R., and S. Eser. 2008 Dec. Characterization of deposits formed on diesel injectors in field test and from thermal oxidative degradation of n-hexadecane in a laboratory reactor [Article]. Chemistry Central Journal 2:11. doi:10.1186/1752-153x-2-25.
  • Wang, S., M. Sui, H. L. Luo, F. Li, and Y. Zhai. 2020 Jan. The study on the influence of oxidation degree and temperature on the viscosity of biodiesel [Article]. Green Processing and Synthesis 9 (1):182–90. doi:10.1515/gps-2020-0019.
  • Wang, Z., J. Zhou, S. Mu, and Liu, W. 2020. Progress in synthesis and application of plant oil-based thermoplastic polymers [Review]. Journal of Forestry Engineering 5 (4):1–11. doi:10.13360/j.issn.2096-1359.201912001.
  • Wo, H. Z., K. D. Dearn, R. H. Song, E. Hu, Y. Xu, and X. Hu. 2015 Nov. Morphology, composition, and structure of carbon deposits from diesel and biomass oil/diesel blends on a pintle-type fuel injector nozzle [Article]. Tribology International 91:189–96. doi:10.1016/j.triboint.2015.07.003.
  • Xiao, J., H. Song, X. Yang, K. Yu, Z. Huang, Q. Yin, X. Bai, and X. Pan. 2018. Experimental study on the effects of nozzle temperature on internal deposits of a gasoline direct injector [Aritcle]. Energy & Fuels 32 (9):8978–85. doi:10.1021/acs.energyfuels.8b01195.
  • Xu, H., R. Kang, D. Liu, and Chen, Y. 2020. Experimental analysis of removing the carbon deposition by magnetic grinding from the inner surface of an aero-engine turbo-shaft [Article]. Surface Technology 49 (1):336. doi:CNKI:SUN:BMJS.0.2020-01-04.
  • Zhu, X. F., C. Li, R. G. Wei, W. Ao, Y. Guo, J. Hu, J. Yang, and C. Hu. 2020 Aug. Quantitative analysis of the carbon generation characteristics during Mg/CO2 combustion: Implications for suppressing carbon deposition [Article]. Aerospace Science and Technology 103:11. doi:10.1016/j.ast.2020.105966.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.