289
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Fault classification using deep learning based model and impact of dust accumulation on solar photovoltaic modules

, ORCID Icon &
Pages 4633-4651 | Received 14 Dec 2022, Accepted 11 Apr 2023, Published online: 24 Apr 2023

References

  • Adinoyi, M. J., and S. A. M. Said. 2013. Effect of dust accumulation on the power outputs of solar photovoltaic modules. Renewable Energy 60:633–36. doi:10.1016/j.renene.2013.06.014.
  • Anwar, S. A., and M. Z. Abdullah. 2014. Micro-crack detection of multicrystalline solar cells featuring an improved anisotropic diffusion filter and image segmentation technique. EURASIP Journal on Image and Video Processing 2014 (1):15. doi:10.1186/1687-5281-2014-15.
  • Aziz, F., A. Ul Haq, S. Ahmad, Y. Mahmoud, M. Jalal, and U. Ali. 2020. A novel convolutional neural network-based approach for fault classification in photovoltaic arrays. IEEE Access 8:41889–904. doi:10.1109/ACCESS.2020.2977116.
  • Bodnar, I., and G. Kozsely 2022. Development of solar panel diagnostic system. 2022 23rd International Carpathian Control Conference (ICCC), 221–26. doi:10.1109/ICCC54292.2022.9805859.
  • Chen, F. -C., and M. R. Jahanshahi. 2018. NB-CNN: Deep learning-based crack detection using convolutional neural network and naïve Bayes data fusion. IEEE Transactions on Industrial Electronics 65 (5):4392–400. doi:10.1109/TIE.2017.2764844.
  • Chen, H., Y. Pang, Q. Hu, and K. Liu. 2020. Solar cell surface defect inspection based on multispectral convolutional neural network. Journal of Intelligent Manufacturing 31 (2):453–68. doi:10.1007/s10845-018-1458-z.
  • Fan, S., Y. Wang, S. Cao, T. Sun, and P. Liu. 2021. A novel method for analyzing the effect of dust accumulation on energy efficiency loss in photovoltaic (PV) system. Energy 234:121112. doi:10.1016/j.energy.2021.121112.
  • Fan, S., Y. Wang, S. Cao, B. Zhao, T. Sun, and P. Liu. 2022. A deep residual neural network identification method for uneven dust accumulation on photovoltaic (PV) panels. Energy 239:122302. doi:10.1016/j.energy.2021.122302.
  • Haridari, P., A. Jafari, and Nasiri, A. 2022. Deep learning-based model for fault classification in solar modules using infrared images. Sustainable Energy Technologies and Assessments 52: 102110. doi:10.1016/j.seta.2022.102110.
  • Higuchi, Y., and T. Babasaki 2018. Failure detection of solar panels using thermographic images captured by drone. 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA), 391–96. doi:10.1109/ICRERA.2018.8566833.
  • Jaffery, Z. A., A. K. Dubey, Irshad, and A. Haque. 2017. Scheme for predictive fault diagnosis in photo-voltaic modules using thermal imaging. Infrared Physics & Technology 83:182–87. doi:10.1016/j.infrared.2017.04.015.
  • Jaszczur, M., A. Koshti, W. Nawrot, and P. Sędor. 2020. An investigation of the dust accumulation on photovoltaic panels. Environmental Science and Pollution Research 27 (2):2001–14. doi:10.1007/s11356-019-06742-2.
  • Kaldellis, J. K., and M. Kapsali. 2011. Simulating the dust effect on the energy performance of photovoltaic generators based on experimental measurements. Energy 36 (8):5154–61. doi:10.1016/j.energy.2011.06.018.
  • Kodakkal, A., R. Veramalla, N. R. Kuthuri, and S. R. Salkuti. 2021. An ALO optimized adaline based controller for an isolated wind power harnessing unit. Designs 5 (4):65. doi:10.3390/DESIGNS5040065.
  • Korkmaz, D., and H. Acikgoz. 2022. An efficient fault classification method in solar photovoltaic modules using transfer learning and multi-scale convolutional neural network. Engineering Applications of Artificial Intelligence 113:104959. doi:10.1016/j.engappai.2022.104959.
  • Madeti, S. R., and S. N. Singh. 2017. Monitoring system for photovoltaic plants: A review. Renewable and Sustainable Energy Reviews 67:1180–207. doi:10.1016/j.rser.2016.09.088.
  • Mekhilef, S., R. Saidur, and M. Kamalisarvestani. 2012. Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renewable and Sustainable Energy Reviews 16 (5):2920–25. doi:10.1016/j.rser.2012.02.012.
  • Pa, M., and A. Kazemi. 2022a. A fault detection scheme utilizing convolutional neural network for PV solar panels with high accuracy. doi:10.48550/arxiv.2210.09226.
  • Pa, M., and A. Kazemi. 2022b. A fault detection scheme utilizing convolutional neural network for PV solar panels with high accuracy. doi:10.48550/arxiv.2210.09226.
  • Paudyal, B. R., and S. R. Shakya. 2016. Dust accumulation effects on efficiency of solar PV modules for off grid purpose: A case study of Kathmandu. Solar Energy 135:103–10. doi:10.1016/j.solener.2016.05.046.
  • Pierdicca, R., E. S. Malinverni, F. Piccinini, M. Paolanti, A. Felicetti, and P. Zingaretti. 2018. Deep convolutional neural network for automatic detection of damaged photovoltaic cells. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII2:893–900. doi:10.5194/isprs-archives-XLII-2-893-2018.
  • Raorane, A., D. Magare, and Y. Mistry 2022a. Performance of fault classification on photovoltaic modules using thermographic images. ITM Web of Conferences, 44, 03065. doi:10.1051/ITMCONF/20224403065.
  • Raorane, A., D. Magare, and Y. Mistry 2022b. Performance of fault classification on Photovoltaic modules using Thermographic images. ITM Web of Conferences, 44, 03065. doi:10.1051/itmconf/20224403065.
  • Ray, P., and S. R. Salkuti. 2022. Hybrid artificial intelligence technique based fault location in a long transmission line. Lecture Notes in Electrical Engineering 812:487–505. doi:10.1007/978-981-16-6970-5_36.
  • Said, S. A. M., G. Hassan, H. M. Walwil, and N. Al-Aqeeli. 2018. The effect of environmental factors and dust accumulation on photovoltaic modules and dust-accumulation mitigation strategies. Renewable and Sustainable Energy Reviews 82:743–60. doi:10.1016/j.rser.2017.09.042.
  • Salkuti, S. R. 2022. Emerging and advanced green energy technologies for sustainable and resilient future grid. Energies 15 (18):6667. doi:10.3390/EN15186667.
  • Sayyah A., Horenstein M. N, and Mazumder M. K. 2014. Energy yield loss caused by dust deposition on photovoltaic panels. Solar Energy 107:576–604. doi:10.1016/j.solener.2014.05.030.
  • Sinha, T., P. Ray, and S. R. Salkuti. 2018. Protection coordination in microgrid using fault current limiters. Journal of Green Engineering 8 (2):125–50. doi:10.13052/JGE1904-4720.822.
  • Triki-Lahiani, A., A. Bennani-Ben Abdelghani, and I. Slama-Belkhodja. 2018. Fault detection and monitoring systems for photovoltaic installations: A review. Renewable and Sustainable Energy Reviews 82:2680–92. doi:10.1016/j.rser.2017.09.101.
  • Zyout, I., and A. Oatawneh. 2020a. Detection of PV solar panel surface defects using transfer learning of the deep convolutional neural networks 1–4. doi: 10.1109/ASET48392.2020.9118384.
  • Zyout, I., and A. Oatawneh 2020b. Detection of PV solar panel surface defects using transfer learning of the deep convolutional neural networks. 2020 Advances in Science and Engineering Technology International Conferences (ASET), 1–4. doi:10.1109/ASET48392.2020.9118382.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.