123
Views
3
CrossRef citations to date
0
Altmetric
Research Article

KOH-assisted synthesis of oxygen-rich activated carbon derived from biomass sugar palm midrib as performance electrode cell supercapacitor

, &
Pages 4886-4897 | Received 20 Oct 2022, Accepted 18 Apr 2023, Published online: 25 Apr 2023

References

  • AlYammahi, J., A. Hai, R. Krishnamoorthy, T. Arumugham, S. W. Hasan, and F. Banat. 2022. Ultrasound-assisted extraction of highly nutritious date sugar from date palm (Phoenix dactylifera) fruit powder: Parametric optimization and kinetic modeling. Ultrasonics Sonochemistry 88 (106107):1–11. doi:10.1016/j.ultsonch.2022.106107.
  • Awitdrus, A., D. A. Yusra, E. Taer, A. Agustino, A. Apriwandi, R. Farma, and R. Taslim. 2022. Biomass conversion into activated carbon as a sustainable energy material for the development of supercapacitor devices. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44 (2):3349–59. doi:10.1080/15567036.2022.2064941.
  • Bello, A., N. Manyala, F. Barzegar, A. A. Khaleed, D. Y. Momodu, and J. K. Dangbegnon. 2016. Renewable pine cone biomass derived carbon materials for supercapacitor application. RSC Advances 6 (3):1800–09. doi:10.1039/c5ra21708c.
  • Bi, R., S. K. Pang, K. C. Yung, and L. K. Yin. 2022. Comprehensive study of used cigarette filters-derived porous activated carbon for Supercapacitors: From biomass waste to sustainable energy source. Journal of Electroanalytical Chemistry 925 (October):116915. doi:10.1016/j.jelechem.2022.116915.
  • Chaitra, K., T. R. Vinny, P. Sivaraman, N. Reddy, C. Hu, K. Venkatesh, S. C. Vivek, N. Nagaraju, and N. Kathyayini. 2017. KOH activated carbon derived from biomass-banana fibers as an efficient negative electrode in high performance asymmetric supercapacitor. Journal of Energy Chemistry 26 (1):56–62. doi:10.1016/j.jechem.2016.07.003.
  • Chen, B., W. Wu, C. Li, Y. Wang, Y. Zhang, L. Fu, Y. Zhu, L. Zhang, and Y. Wu. 2019. Oxygen/Phosphorus co-doped porous carbon from cicada slough as high-performance electrode material for supercapacitors. Scientific Reports 9 (1):1–8. doi:10.1038/s41598-019-41769-y.
  • De, B., S. Banerjee, T. Pal, K. D. Verma, A. Tyagi, P. K. Manna, and K. K. Kar. 2020. Transition metal oxide-/carbon-/electronically conducting polymer-based ternary composites as electrode materials for supercapacitors. Springer Series in Materials Science 302. doi:10.1007/978-3-030-52359-6_15.
  • Farma, R., A. Indriani, and I. Apriyani. 2023. Hierarchical-nanofiber structure of biomass-derived carbon framework with direct CO2 activation for symmetrical supercapacitor electrodes. Journal of Materials Science: Materials in Electronics 34 (2). doi:10.1007/s10854-022-09446-5.
  • Farma, R., A. Indriani, and I. Apriyani. 2023. Hierarchical-nanofiber structure of biomass-derived carbon framework with direct CO2 activation for symmetrical supercapacitor electrodes. Journal of Materials Science: Materials in Electronics 1–15. doi:10.1007/s10854-022-09446-5.
  • Farma, R., M. Kusumasari, I. Apriyani, and A. Awitdrus. 2021. The production of carbon electrodes from lignocellulosic biomass of areca midrib through a chemical activation process for supercapacitor cells application. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 00 (00):1–11. doi:10.1080/15567036.2021.2000068.
  • Farma, R., N. Nur’aini, I. Apriyani, A. Awitdrus, E. Taer, and A. Apriwandi. 2023. Honeycomb-like carbon with tunable pore size from biomass phoenix dactylifera midrib for highly compressible binder-free supercapacitors. JOM 75 (3):708–17. doi:https://doi.org/10.1007/s11837-022-05667-5.
  • Farma, R., B. Winalda, and I. Apriyani. 2023. The self-adhesive properties of carbon activated-like shape coin derived from Palmae plant waste and used as high-performance supercapacitor electrodes. Journal of Electrochemical Energy Conversion and Storage 20 (2):1–7. doi:10.1115/1.4056268.
  • Guo, N., W. Luo, R. Guo, D. Qiu, Z. Zhao, L. Wang, D. Jia, and J. Guo. 2020. Interconnected and hierarchical porous carbon derived from soybean root for ultrahigh rate supercapacitors. Journal of Alloys and Compounds 834:155115. doi:10.1016/j.jallcom.2020.155115.
  • Hanappi, M. F. Y. M., M. Deraman, M. Suleman, M. A. R. Othman, N. H. Basri, N. S. M. Nor, E. Hamdan, N. E. S. Sazali, and N. S. M. Tajuddin (2018). Preparation and characterization of graphene/turbostratic carbon derived from chitosan film for supercapacitor electrodes. AIP Conference Proceedings. 1940. 10.1063/1.5027928
  • He, G., G. Yan, Y. Song, and L. Wang. 2020. Biomass juncus derived nitrogen-doped porous carbon materials for supercapacitor and oxygen reduction reaction. Frontiers in Chemistry 8 (April):1–10. doi:10.3389/fchem.2020.00226.
  • Ilyas, R. A., S. M. Sapuan, and M. R. Ishak. 2018. Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohydrate Polymers 181:1038–51. doi:10.1016/j.carbpol.2017.11.045.
  • Jiang, L., L. Sheng, and Z. Fan. 2017. Biomass-derived carbon materials with structural diversities and their applications in energy stronge. Science China Materials 5 (December). doi: 10.1007/s40843-017-9169-4.
  • Lan, D., M. Chen, Y. Liu, Q. Liang, W. Tu, Y. Chen, J. Liang, and F. Qiu. 2020. Preparation and characterization of high value-added activated carbon derived from biowaste walnut shell by KOH activation for supercapacitor electrode. Journal of Materials Science: Materials in Electronics 31 (21):18541–53. doi:https://doi.org/10.1007/s10854-020-04398-0.
  • Lin, S., F. Wang, and Z. Shao. 2021. Biomass applied in supercapacitor energy storage devices. Journal of Materials Science 56 (3):1943–79. doi:10.1007/s10853-020-05356-1.
  • Li, C., X. Zhang, K. Wang, F. Su, C. M. Chen, F. Liu, Z. S. Wu, and Y. Ma. 2021. Recent advances in carbon nanostructures prepared from carbon dioxide for high-performance supercapacitors. Journal of Energy Chemistry 54:352–67. doi:10.1016/j.jechem.2020.05.058.
  • Naseri, F., S. Karimi, E. Farjah, and E. Schaltz. 2022. Supercapacitor management system: A comprehensive review of modeling, estimation, balancing, and protection techniques. Renewable and Sustainable Energy Reviews 155 (October 2021):111913. doi:10.1016/j.rser.2021.111913.
  • Perez-Salcedo, K. Y., S. Ruan, J. Su, X. Shi, A. M. Kannan, and B. Escobar. 2020. Seaweed-derived KOH activated biocarbon for electrocatalytic oxygen reduction and supercapacitor applications. Journal of Porous Materials 27 (4):959–69. doi:10.1007/s10934-020-00871-7.
  • Ran, F., X. Yang, and L. Shao. 2018. Recent progress in carbon-based nanoarchitectures for advanced supercapacitors. Advanced Composites and Hybrid Materials 1 (1):32–55. doi:10.1007/s42114-017-0021-2.
  • Ren, M., M. -Y. Li, L. -Q. Lu, Y. -S. Liu, F. -K. An, K. Huang, and Z. Fu. 2022. Arenga pinnata resistant starch modulate gut microbiota and ameliorate intestinal inflammation in aged mice. Nutrients 14 (19):3931. doi:10.3390/nu14193931.
  • Roy, C. K., S. S. Shah, A. H. Reaz, S. Sultana, A. N. Chowdhury, S. H. Firoz, M. H. Zahir, M. A. Ahmed Qasem, and M. A. Aziz. 2021. Preparation of hierarchical porous activated carbon from banana leaves for high-performance supercapacitor: Effect of type of electrolytes on performance. Chemistry - an Asian Journal 16 (4):296–308. doi:10.1002/asia.202001342.
  • Saikia, B. K., S. M. Benoy, M. Bora, J. Tamuly, M. Pandey, and D. Bhattacharya. 2020. A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials. Fuel 282 (July):118796. doi:10.1016/j.fuel.2020.118796.
  • Saka, C., O. Baytar, Y. Yardim, and Ö. Şahin. 2020. Improvement of electrochemical double-layer capacitance by fast and clean oxygen plasma treatment on activated carbon as the electrode material from walnut shells. Biomass & Bioenergy 143 (November). doi: 10.1016/j.biombioe.2020.105848.
  • Sankar, S., A. T. A. Ahmed, A. I. Inamdar, H. Im, Y. B. Im, Y. Lee, D. Y. Kim, and S. Lee. 2019. Biomass-derived ultrathin mesoporous graphitic carbon nanoflakes as stable electrode material for high-performance supercapacitors. Materials & Design 169:107688. doi:10.1016/j.matdes.2019.107688.
  • Shi, W., B. Chang, H. Yin, S. Zhang, B. Yang, and X. Dong. 2019. Crab shell-derived honeycomb-like graphitized hierarchically porous carbons for satisfactory rate performance of all-solid-state supercapacitors. Sustainable Energy & Fuels 3 (5):1201–14. doi:10.1039/c8se00574e.
  • Shu, Y., Q. Bai, G. Fu, Q. Xiong, C. Li, H. Ding, Y. Shen, and H. Uyama. 2020. Hierarchical porous carbons from polysaccharides carboxymethyl cellulose, bacterial cellulose, and citric acid for supercapacitor. Carbohydrate Polymers 227 (September 2019):115346. doi:10.1016/j.carbpol.2019.115346.
  • Tian, M., J. Wu, R. Li, Y. Chen, and D. Long. 2019. Fabricating a high-energy-density supercapacitor with asymmetric aqueous redox additive electrolytes and free-standing activated-carbon-felt electrodes. Chemical Engineering Journal 363 (January):183–91. doi:10.1016/j.cej.2019.01.070.
  • Vinayagam, M., R. Suresh Babu, A. Sivasamy, and A. L. Ferreira de Barros. 2020. Biomass-derived porous activated carbon from Syzygium cumini fruit shells and Chrysopogon zizanioides roots for high-energy density symmetric supercapacitors. Biomass & Bioenergy 143 (October):105838. doi:10.1016/j.biombioe.2020.105838.
  • Wang, Y., Q. Qu, S. Gao, G. Tang, and K. Liu. 2019. Biomass derived carbon as binder-free electrode materials for supercapacitors. Carbon 155:706–26. doi:10.1016/j.carbon.2019.09.018.
  • Wang, Y., Q. Qu, S. Gao, G. Tang, K. Liu, S. He, and C. Huang. 2019. Biomass derived carbon as binder-free electrode materials for supercapacitors. Carbon 155:706–26. doi:10.1016/j.carbon.2019.09.018.
  • Wang, J., X. Zhang, Z. Li, Y. Ma, and L. Ma. 2020. Recent progress of biomass-derived carbon materials for supercapacitors. Journal of Power Sources 451 (October 2019):227794. doi:10.1016/j.jpowsour.2020.227794.
  • Wu, Y., J. P. Cao, Q. Q. Zhuang, X. Y. Zhao, Z. Zhou, Y. L. Wei, M. Zhao, and H. C. Bai. 2021. Biomass-derived three-dimensional hierarchical porous carbon network for symmetric supercapacitors with ultra-high energy density in ionic liquid electrolyte. Electrochimica acta 371:137825. doi:10.1016/j.electacta.2021.137825.
  • Yetri, Y., A. T. Hoang, D. Mursida, D. Muldarisnur, E. Chau, M. Q. Taer, and M. Q. Chau. 2020. Synthesis of activated carbon monolith derived from cocoa pods for supercapacitor electrodes application. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 00 (00):1–15. doi:10.1080/15567036.2020.1811433.
  • Zheng, S., J. Zhang, H. Deng, Y. Du, and X. Shi. 2021. Chitin derived nitrogen-doped porous carbons with ultrahigh specific surface area and tailored hierarchical porosity for high performance supercapacitors. Journal of Bioresources and Bioproducts 6 (2):142–51. doi:10.1016/j.jobab.2021.02.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.