194
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Investigation of cooling control effect of fine water mist on lithium-ion battery thermal runaway

ORCID Icon, , &
Pages 5003-5014 | Received 07 Oct 2022, Accepted 21 Feb 2023, Published online: 02 May 2023

References

  • Afsharpanah, F., S. Ajarostaghi, and M. Arıcı. 2022. Parametric study of phase change time reduction in a shell-and-tube ice storage system with anchor-type fin design. International Communications in Heat and Mass Transfer 137:106281. doi:10.1016/j.icheatmasstransfer.2022.106281.
  • Afsharpanah, F., M. Izadi, F. Hamedani, S. S. Mousavi Ajarostaghi, and W. Yaïci. 2022. Solidification of nano-enhanced PCM-porous composites in a cylindrical cold thermal energy storage enclosure. Case Studies in Thermal Engineering 39:102421. doi:10.1016/j.csite.2022.102421.
  • Afsharpanah, F., K. Pakzad, S. Ajarostaghi, and M. Arıcı. 2022. Assessment of the charging performance in a cold thermal energy storage container with two rows of serpentine tubes and extended surfaces. Journal of Energy Storage 51:104464. doi:10.1016/j.est.2022.104464.
  • Coman, P. T., E. C. Darcy, C. T. Veje, and R. E. White. 2017. Numerical analysis of heat propagation in a battery pack using a novel technology for triggering thermal runaway. Applied Energy 203:189–200. doi:10.1016/j.apenergy.2017.06.033.
  • Feng, X., X. He, M. Ouyang, L. Lu, P. Wu, C. Kulp, and S. Prasser. 2015. Thermal runaway propagation model for designing a safer battery pack with 25 Ah LiNiCoMnO2 large format lithium ion battery. Applied Energy 154:74–91. doi:10.1016/j.apenergy.2015.04.118.
  • Feng, X., M. Ouyang, X. Liu, L. Lu, Y. Xia, and X. He. 2018. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Materials 10:246–67. doi:10.1016/j.ensm.2017.05.013.
  • Feng, X., S. Zheng, D. Ren, X. He, L. Wang, H. Cui, X. Liu, C. Jin, F. Zhang, C. Xu, et al. 2019. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database. Applied Energy 246:53–64. doi:10.1016/j.apenergy.2019.04.009.
  • Fernandes, Y., A. Bry, and S. de Persis. 2018. Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery. Journal of Power Sources 389:106–19. doi:10.1016/j.jpowsour.2018.03.034.
  • Golubkov, A. W., D. Fuchs, J. Wagner, H. Wiltsche, C. Stangl, G. Fauler, G. Voitic, A. Thaler, and V. Hacker. 2014. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes. RSC Advances 4:3633–42. doi:10.1039/C3RA45748F.
  • Goodenough, J. B. 2015. Energy storage materials: A perspective. Energy Storage Materials 1:158–61. doi:10.1016/j.ensm.2015.07.001.
  • Jaliliantabar, F., R. Mamat, and S. Kumarasamy. 2022. Prediction of lithium-ion battery temperature in different operating conditions equipped with passive battery thermal management system by artificial neural networks. Materials Today: Proceedings 48:1796–804. doi:10.1016/j.matpr.2021.09.026.
  • Jhu, C., Y. Wang, C. Wen, and C. -M. Shu. 2012. Thermal runaway potential of LiCoO2 and Li(Ni1/3Co1/3Mn1/3)O2 batteries determined with adiabatic calorimetry methodology. Applied Energy 100:127–31. doi:10.1016/j.apenergy.2012.05.064.
  • Kim, G., A. Pesaran, and R. Spotnitz. 2007. A three-dimensional thermal abuse model for lithium-ion cells. Journal of Power Sources 170:476–89. doi:10.1016/j.jpowsour.2007.04.018.
  • Kshetrimayum, K. S., Y. Yoon, H. Gye, and C. -J. Lee. 2019. Preventing heat propagation and thermal runaway in electric vehicle battery modules using integrated PCM and micro-channel plate cooling system. Applied Thermal Engineering 159:113797. doi:10.1016/j.applthermaleng.2019.113797.
  • Lei, S., Y. Shi, and G. Chen. 2020. A lithium-ion battery-thermal-management design based on phase-change-material thermal storage and spray cooling. Applied Thermal Engineering 168:114792. doi:10.1016/j.applthermaleng.2019.114792.
  • Liu, Y., Q. Duan, J. Xu, H. Li, J. Sun, and Q. Wang. 2020. Experimental study on a novel safety strategy of lithium-ion battery integrating fire suppression and rapid cooling. Journal of Energy Storage 28:101185. doi:10.1016/j.est.2019.101185.
  • Liu, X., D. Ren, H. Hsu, X. Feng, G. -L. Xu, M. Zhuang, H. Gao, L. Lu, X. Han, Z. Chu, et al. 2018. Thermal runaway of lithium-ion batteries without internal short circuit. Joule 2:2047–64. doi:10.1016/j.joule.2018.06.015.
  • Liu, T., C. Tao, and X. Wang. 2020. Cooling control effect of water mist on thermal runaway propagation in lithium ion battery modules. Applied Energy 267:115087. doi:10.1016/j.apenergy.2020.115087.
  • Ren, D., X. Feng, L. Liu, H. Hsu, L. Lu, L. Wang, X. He, and M. Ouyang. 2021. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition. Energy Storage Materials 34:563–73. doi:10.1016/j.ensm.2020.10.020.
  • Ribière, P., S. Grugeon, M. Morcrette, S. Boyanov, S. Laruelle, and G. Marlair. 2012. Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry. Energy and Environmental Science 5 (1):5271–528. doi:10.1039/C1EE02218K.
  • Russo, P., G. Longobardo, M. Mazzaro, Di, B. C., Cancelliere, P. 2019. Fire behaviour of NMC Li-ion battery cells. Proceedings of the Ninth International Seminar on Fire and Explosion Hazards, Saint Petersburg, Russia. 881–90.
  • Said, A. O., A. Garber, Y. Peng, and S. I. Stoliarov. 2022. Experimental investigation of suppression of 18650 lithium ion cell array fires with water mist. Fire Technology 58:523–51. doi:10.1007/s10694-021-01151-9.
  • Said, A. O., C. Lee, S. I. Stoliarov, and A. W. Marshall. 2019. Comprehensive analysis of dynamics and hazards associated with cascading failure in 18650 lithium ion cell arrays. Applied Energy 248:415–28. doi:10.1016/j.apenergy.2019.04.141.
  • Saw, L., H. Poon, H. Thiam, Z. Cai, W. T. Chong, N. A. Pambudi, and Y. J. King. 2018. Novel thermal management system using mist cooling for lithium-ion battery packs. Applied Energy 223:146–58. doi:10.1016/j.apenergy.2018.04.042.
  • Wang, Q., P. Ping, X. Zhao, G. Chu, J. Sun, and C. Chen. 2012. Thermal runaway caused fire and explosion of lithium ion battery. Journal of Power Sources 208:210–24. doi:10.1016/j.jpowsour.2012.02.038.
  • Xu, B., J. Lee, D. Kwon, L. Kong, and M. Pecht. 2021. Mitigation strategies for Li-ion battery thermal runaway: A review. Renewable and Sustainable Energy Reviews 150:111437. doi:10.1016/j.rser.2021.111437.
  • Yayathi, S., W. Walker, D. Doughty, and H. Ardebili. 2016. Energy distributions exhibited during thermal runaway of commercial lithium ion batteries used for human spaceflight applications. Journal of Power Sources 329:197–206. doi:10.1016/j.jpowsour.2016.08.078.
  • Zhang, W., Z. Liang, X. Yin, and G. Ling. 2021. Avoiding thermal runaway propagation of lithium-ion battery modules by using hybrid phase change material and liquid cooling. Applied Thermal Engineering 184:116380. doi:10.1016/j.applthermaleng.2020.116380.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.