59
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Comparison study on three ice storage equipments using micro-tube heat exchanger for cold chain logistics

, , & ORCID Icon
Pages 5521-5536 | Received 20 Oct 2022, Accepted 10 Feb 2023, Published online: 09 May 2023

References

  • Al Kumait, A. A. R., T. K. Ibrahim, and M. A. Abdullah. 2019. Experimental and numerical study of forced convection heat transfer in different internally ribbed tubes configuration using TiO2 nanofluid. Heat Transfer—Asian Research 48 (5):1778–804. doi:10.1002/htj.21457.
  • Al-Shannaq, R., A. Auckaili, and M. Farid. 2022 207–28. Cooling of milk on dairy farms: An application of a novel ice encapsulated storage system in New Zealand[M]//Food engineering innovations across the food supply chain. Academic Press. doi:10.1016/B978-0-12-821292-9.00006-6
  • Al-Shannaq, R., B. Young, and M. Farid. 2019. Cold energy storage in a packed bed of novel graphite/PCM composite spheres. Energy 171:296–305. doi:10.1016/j.energy.2019.01.024.
  • Cai, P., Y. Jiang, H. Wang, L. Wu, P. Cao, Y. Zhang, and F. Yao. 2020. Numerical simulation on the influence of the longitudinal fins on the enhancement of a shell-and-tube ice storage device. Sustainability 12 (6):2292. doi:10.3390/su12062292.
  • Cheng, C., F. Wang, Y. Tian, X. Wu, J. Zheng, J. Zhang, L. Li, P. Yang, and J. Zhao. 2020. Review and prospects of hydrate cold storage technology. Renewable and Sustainable Energy Reviews 117:109492. doi:10.1016/j.rser.2019.109492.
  • Elghool, A., F. Basrawi, T. K. Ibrahim, H. Ibrahim, M. Ishak, M. Hazwan Bin Yusof, and S. A. Bagaber. 2020. Multi-objective optimization to enhance the performance of thermo-electric generator combined with heat pipe-heat sink under forced convection. Energy 208:118270. doi:10.1016/j.energy.2020.118270.
  • Elghool, A., F. Basrawi, H. Ibrahim, T. K. Ibrahim, M. Ishak, T. M. Yusof, and S. A. Bagaber. 2020. Enhancing the performance of a thermo-electric generator through multi-objective optimisation of heat pipes-heat sink under natural convection. Energy Conversion and Management 209:112626. doi:10.1016/j.enconman.2020.112626.
  • Huang, Y., Q. Sun, F. Yao, and C. Zhang. 2020. Performance optimization of a finned shell-and-tube ice storage unit. Applied Thermal Engineering 167:114788. doi:10.1016/j.applthermaleng.2019.114788.
  • Hwang, Y. W., and M. S. Kim. 2006. The pressure drop in microtubes and the correlation development. International Journal of Heat and Mass Transfer 49 (11–12):1804–12. doi:10.1016/j.ijheatmasstransfer.2005.10.040.
  • Iasiello, M., M. Mameli, S. Filippeschi, and N. Bianco. 2021. Metal foam/PCM melting evolution analysis: Orientation and morphology effects. Applied Thermal Engineering 187:116572. doi:10.1016/j.applthermaleng.2021.116572.
  • Ibrahim, T. K., A. T. Al-Sammarraie, M. S. M. Al-Jethelah, W. H. Al-Doori, M. R. Salimpour, and H. Tao. 2020. The impact of square shape perforations on the enhanced heat transfer from fins: Experimental and numerical study. International Journal of Thermal Sciences 149:106144. doi:10.1016/j.ijthermalsci.2019.106144.
  • Ibrahim, T. K., A. T. Al-Sammarraie, W. H. Al-Taha, M. R. Salimpour, M. Al-Jethelah, A. N. Abdalla, and H. Tao. 2019. Experimental and numerical investigation of heat transfer augmentation in heat sinks using perforation technique. Applied Thermal Engineering 160:113974. doi:10.1016/j.applthermaleng.2019.113974.
  • Ibrahim, T. K., M. N. Mohammed, M. K. Mohammed, G. Najafi, N. Azwadi Che Sidik, F. Basrawi, A. N. Abdalla, and S. S. Hoseini. 2018. Experimental study on the effect of perforations shapes on vertical heated fins performance under forced convection heat transfer. International Journal of Heat and Mass Transfer 118:832–46. doi:10.1016/j.ijheatmasstransfer.2017.11.047.
  • Jia, B., F. Liu, S. Yuan, Z. Li, and X. Zhang. 2020. The effect of alternating ventilation on forced air pre-cooling of cherries. International Journal of Food Engineering 17 (6):423–33. doi:10.1515/ijfe-2020-0253.
  • Jia, B., L. Yang, L. Zhang, X. Li, B. Liu, F. Chen, and Q. Zhang. 2022. Energy consumption in relation to the number of stacked packages in forced air pre‐cooling of apples. Journal of Food Process Engineering 45 (5):e14021. doi:10.1111/jfpe.14021.
  • Kehinde, A. G., T. Ngonda, A. Raji, and K. Kanyarusoke. 2022. A review of different technologies for refrigerated truck. Materials Today: Proceedings 56:2305–10. doi:10.1016/j.matpr.2021.11.646.
  • Khatibi, M., R. Nemati-Farouji, A. Taheri, A. Kazemian, T. Ma, and H. Niazmand. 2021. Optimization and performance investigation of the solidification behavior of nano-enhanced phase change materials in triplex-tube and shell-and-tube energy storage units. Journal of Energy Storage 33:102055. doi:10.1016/j.est.2020.102055.
  • Mahdi, J. M., and E. C. Nsofor. 2017. Melting enhancement in triplex-tube latent thermal energy storage system using nanoparticles-fins combination. International Journal of Heat and Mass Transfer 109:417–27. doi:10.1016/j.ijheatmasstransfer.2017.02.016.
  • Moench, S., and R. Dittrich. 2022. Influence of natural convection and volume change on numerical simulation of phase change materials for latent heat storage. Energies 15 (8):2746. doi:10.3390/en15082746.
  • Mousavi Ajarostaghi, S. S., K. Sedighi, M. Aghajani Delavar, and S. Poncet. 2020. Numerical study of a horizontal and vertical shell and tube ice storage systems considering three types of tube. Applied Sciences 10 (3):1059. doi:10.3390/app10031059.
  • Nóbrega, C. R. E. S., K. A. R. Ismail, and F. A. M. Lino. 2019. Enhancement of ice formation around vertical finned tubes for cold storage applications. International Journal of Refrigeration 99:251–63. doi:10.1016/j.ijrefrig.2018.12.018.
  • Parsazadeh, M., and X. Duan. 2018. Numerical study on the effects of fins and nanoparticles in a shell and tube phase change thermal energy storage unit. Applied Energy 216:142–56. doi:10.1016/j.apenergy.2018.02.052.
  • Sefidan, A. M., M. E. Sangari, M. Sellier, M. I. H. Khan, and S. C. Saha. 2022. Modeling of multi-layer phase change material in a triplex tube under various thermal boundary conditions. Energies 15 (9):3465. doi:10.3390/en15093465.
  • Tay, N. H. S., F. Bruno, and M. Belusko. 2013. Comparison of pinned and finned tubes in a phase change thermal energy storage system using CFD. Applied Energy 104:79–86. doi:10.1016/j.apenergy.2012.10.040.
  • Wang, D., B. Jia, Y. Lai, and S. Hu. 2022. General formula of cooling curve for horticultural products on forced air pre‐cooling. Journal of Food Process Engineering 45 (5):e14020. doi:10.1111/jfpe.14020.
  • Yang, T., Q. Sun, and R. Wennersten. 2018. The impact of refrigerant inlet temperature on the ice storage process in an ice-on-coil storage plate. Energy Procedia 145:82–87. doi:10.1016/j.egypro.2018.04.014.
  • Yu, J., K. Leng, F. Wang, H. Ye, and Y. Luo. 2020. SimulatioN study on dynamic thermal performance of a new ventilated roof with form-stable PCM in Southern China. Sustainability 12 (22):9315. doi:10.3390/su12229315.
  • Zhang, Y., G. Yuan, Y. Wang, P. Gao, C. Fan, and Z. Wang. 2022. Solidification of an annular finned tube ice storage unit. Applied Thermal Engineering 212:118567. doi:10.1016/j.applthermaleng.2022.118567.
  • Zhou, H., M. Chen, X. Han, P. Cao, F. Yao, and L. Wu. 2019. Enhancement study of ice storage performance in circular tank with finned tube. Processes 7 (5):266. doi:10.3390/pr7050266.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.