131
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Sustainable mechanism to popularise round the clock indoor solar cooking – Part II: workable solution

ORCID Icon, ORCID Icon & ORCID Icon
Pages 5537-5558 | Received 14 Feb 2023, Accepted 22 Apr 2023, Published online: 09 May 2023

References

  • 2011 Census of India. (n.d.) https://censusindia.gov.in/
  • Altouni, A., S. Gorjian, and A. Banakar. 2022. Development and performance evaluation of a photovoltaic-powered induction cooker (PV-IC): An approach for promoting clean production in rural areas. Cleaner Engineering and Technology 6:100373. doi:10.1016/j.clet.2021.100373.
  • Atmane, I., N. El Moussaoui, K. Kassmi, O. Deblecker, and N. Bachiri. 2021. Development of an innovative cooker (hot plate) with photovoltaic solar energy. Journal of Energy Storage 36:102399. doi:10.1016/j.est.2021.102399.
  • Esen, M. 2004. Thermal performance of a solar cooker integrated vacuum-tube collector with heat pipes containing different refrigerants. Solar Energy 76 (6):751–57. doi:10.1016/j.solener.2003.12.009.
  • Ju, X., C. Xu, Z. Liao, X. Du, G. Wei, Z. Wang, and Y. Yang. 2017. A review of concentrated photovoltaic-thermal (CPVT) hybrid solar systems with waste heat recovery (WHR). Science Bulletin 62 (20):1388–426. doi:10.1016/j.scib.2017.10.002.
  • Kalogirou, S. 2013. Solar energy engineering: Processes and systems. ed. 2nd. Academic Press - Elsevier. doi:10.1016/B978-0-12-374501-9.X0001-5.
  • Lamkaddem, A., E. L. Moussaoui, N. Rhiat, M. Malek, R. Kassmi, K. Deblecker O, and N. Bachiri. 2022. System for powering autonomous solar cookers by batteries. Scientific African 17:e01349. doi:10.1016/j.sciaf.2022.e01349.
  • Morrison, G. L., J. Di, and D. R. Mills (1993). Development of a solar thermal cooking system. (Issue January 1993). School of Physics, University of Sydney, Report No. 1993/FMT/1. https://www.researchgate.net/publication/242118221_DEVELOPMENT_OF_A_SOLAR_THERMAL_COOKING_SYSTEM
  • Morrison, G. L., and D. R. Mills (1993). Solar stove for developed countries. Proceedings of ISES World Congress, Budapest, Hungary, 491–96. https://www.researchgate.net/profile/Graham-Morrison/publication/331199210_Solar_Stove_for_Developed_Countries/links/5c6bdcf0a6fdcc404ebb1b61/Solar-Stove-for-Developed-Countries.pdf
  • Opoku, R., B. Baah, C. K. K. Sekyere, E. A. Adjei, F. Uba, G. Y. Obeng, and F. Davis. 2022. Unlocking the potential of solar PV electric cooking in households in sub-Saharan Africa – the case of pressurized solar electric cooker (PSEC). Scientific African 17:e01328. doi:10.1016/j.sciaf.2022.e01328.
  • Patankar, S. V. 2018. Numerical heat transfer and fluid flow. CRC Press. doi:10.1201/9781482234213.
  • Schwarzer, K., and M. E. V. Da Silva. 2003. Solar cooking system with or without heat storage for families and institutions. Solar Energy 75 (1):35–41. doi:10.1016/S0038-092X(03)00197-X.
  • Schwarzer, K., and M. E. V. Da Silva. 2008. Characterisation and design methods of solar cookers. Solar Energy 82 (2):157–63. doi:10.1016/j.solener.2006.06.021.
  • Varun, K., and U. C. Arunachala. 2021. Transient parametric pilot study on thermosyphon heat transport device: A computational fluid dynamics hypothesis and experimental exploration. Heat Transfer 50 (4):3426–57. doi:10.1002/htj.22035.
  • Varun, K., U. C. Arunachala, and M. S. Manjunath. 2021. Role of solar indoor cooker with natural circulation in mitigation of carbon emissions. International Journal of Global Warming 25 (3/4):440. doi:10.1504/IJGW.2021.119011.
  • Varun, K., U. C. Arunachala, and P. K. Vijayan. 2022a. Experimental demonstration of the performance of the novel thermosyphon heat transport device and comparison with CFD predictions. International Journal of Thermal Sciences 176:107503. doi:10.1016/j.ijthermalsci.2022.107503.
  • Varun, K., U. C. Arunachala, and P. K. Vijayan. 2022b. Sustainable mechanism to popularise round the clock indoor solar cooking – Part I: Global status. Journal of Energy Storage 54:105361. doi:10.1016/j.est.2022.105361.
  • Vijayan, P. K. 2018. Deep decarbonization options for the energy sector - the role of solar thermal. In Invited talk, symposium on science, technology and ecosystem for sustainable rural development, NASI-2018, December 6-7, 2018. Chitrakoot, India.
  • Vijayan, P. K., A. K. Nayak, and N. Kumar. 2019. Single-phase, two-phase and supercritical natural circulation systems. First). Woodhead Publishing - Elsevier. doi:10.1016/C2017-0-01142-4.
  • Vijayan, P. K., T. Ramakrishna, A. Borgohain, B. M. Lingade, and D. Mahender (2018a). A diverse passive fuel cooling system for advanced high temperature reactors. The Proceedings Of 6th International Conference On Nuclear And Renewable Energy Resources (NURER), Jeju, Korea. Vol. 30.
  • Vijayan, P. K., S. K. Sinha, R. K. Singh, A. Kumar, A. K. Vishnoi, A. Kaushik, R. K. Bagul, I. V. Dulera, R. P. Vedula, S. B. Kedare, et al. (2018b). Conceptual design of a mini solar thermal power plant. The Proceedings Of 6th International Conference On Nuclear And Renewable Energy Resources (NURER), Jeju, Korea. Vol. 30.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.