112
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Mild modification of lignin pyrolysis vapors by metal oxide catalysts: A comparative study with molecular sieve catalysts

, , , & ORCID Icon
Pages 5052-5062 | Received 30 Nov 2022, Accepted 18 Apr 2023, Published online: 02 May 2023

References

  • Bajwa, D. S., G. Pourhashem, A. H. Ullah, and S. G. Bajwa. 2019. A concise review of current lignin production, applications, products and their environmental impact. Industrial Crops and Products 139:111526. doi:10.1016/j.indcrop.2019.111526.
  • Bhoi, P. R., A. S. Ouedraogo, V. Soloiu, and R. Quirino. 2020. Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis. Renewable and Sustainable Energy Reviews 121:109676. doi:10.1016/j.rser.2019.109676.
  • Chen, X., Y. Chen, H. Yang, W. Chen, X. Wang, and H. Chen. 2017. Fast pyrolysis of cotton stalk biomass using calcium oxide. Bioresource Technology 233:15–20. doi:10.1016/j.biortech.2017.02.070.
  • Chen, X., Y. Chen, H. Yang, X. Wang, Q. Che, W. Chen, and H. Chen. 2019. Catalytic fast pyrolysis of biomass: Selective deoxygenation to balance the quality and yield of bio-oil. Bioresource Technology 273:153–58. doi:10.1016/j.biortech.2018.11.008.
  • Dai, L., Y. Wang, Y. Liu, C. He, R. Ruan, Z. Yu, L. Jiang, Z. Zeng, and Q. Wu. 2020. A review on selective production of value-added chemicals via catalytic pyrolysis of lignocellulosic biomass. The Science of the Total Environment 749:142386. doi:10.1016/j.scitotenv.2020.142386.
  • Ellison, C. R., and D. Boldor. 2021. Mild upgrading of biomass pyrolysis vapors via ex-situ catalytic pyrolysis over an iron-montmorillonite catalyst. Fuel 291 (5):120226. doi:10.1016/j.fuel.2021.120226.
  • Fu, P., X. Bai, Z. Li, W. Yi, Y. Li, and Y. Zhang. 2018. Fast pyrolysis of corn stovers with ceramic ball heat carriers in a novel dual concentric rotary cylinder reactor. Bioresource Technology 263:467–74. doi:10.1016/j.biortech.2018.05.033.
  • Fu, P., X. Bai, W. Yi, Z. Li, and Y. Li. 2018. Fast pyrolysis of wheat straw in a dual concentric rotary cylinder reactor with ceramic balls as recirculated heat carrier. Energy Conversion and Management 171:855–62. doi:10.1016/j.enconman.2018.06.035.
  • Guda, V. K., and H. Toghiani. 2017. Catalytic pyrolysis of pinewood using metal oxide catalysts in an integrated reactor system. Biofuels 8 (5):527–36. doi:10.1080/17597269.2016.1231960.
  • Han, Y., M. Gholizadeh, C. Tran, S. Kaliaguine, C. Li, M. Olarte, and M. Garcia-Perez. 2019. Hydrotreatment of pyrolysis bio-oil: A review. Fuel Processing Technology 195:106140. doi:10.1016/j.fuproc.2019.106140.
  • Iliopoulou, E. F., K. S. Triantafyllidis, and A. A. Lappas. 2019. Overview of catalytic upgrading of biomass pyrolysis vapors toward the production of fuels and high-value chemicals. Wiley Interdisciplinary Reviews: Energy and Environment 8 (1):322. doi:10.1002/wene.322.
  • Kan, T., V. Strezov, and T. J. Evans. 2016. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Reviews 57:1126–40. doi:10.1016/j.rser.2015.12.185.
  • Khalid, M. A. A., N. Abdullah, M. N. M. Ibrahim, R. M. Taib, S. J. M. Rosid, N. M. Shukri, N. Yahaya, and W. N. B. W. Abdullah. 2022. Catalytic pyrolysis of waste oil into hydrocarbon fuel utilizing cerium oxide catalyst. The Korean Journal of Chemical Engineering 39 (6):1487–95. doi:10.1007/s11814-022-1091-6.
  • Li, J., X. Bai, Y. Fang, Y. Chen, X. Wang, H. Chen, and H. Yang. 2020. Comprehensive mechanism of initial stage for lignin pyrolysis. Combustion and Flame 215:1–9. doi:10.1016/j.combustflame.2020.01.016.
  • Lou, Z., K. Lu, Y. Yang, S. Li, and G. Li. 2019. Catalytic fast pyrolysis of lignin to produce aromatic hydrocarbons: Optimal conditions and reaction mechanism. RSC Advances 9 (55):31960–68. doi:10.1039/c9ra02538c.
  • Lu, Q., Z. Zhang, C. Dong, and X. Zhu. 2010. Catalytic upgrading of biomass fast pyrolysis vapors with nano metal oxides: an analytical Py-GC/MS Study. Energies 3 (11):1805–20. doi:10.3390/en3111805.
  • Lu, Q., Z. Zhang, X. Wang, C. Dong, and Y. Liu. 2014. Catalytic upgrading of biomass fast pyrolysis vapors using ordered mesoporous ZrO2, TiO2 and SiO2. Energy Procedia 61:1937–41. doi:10.1016/j.egypro.2014.12.247.
  • Luo, C., Y. Zheng, Y. Xu, N. Ding, Q. Shen, and C. Zheng. 2015. Wet mixing combustion synthesis of CaO-based sorbents for high temperature cyclic CO2 capture. Chemical Engineering Journal 267:111–16. doi:10.1016/j.cej.2015.01.005.
  • Mante, O. D., J. A. Rodriguez, S. D. Senanayake, and S. P. Babu. 2015. Catalytic conversion of biomass pyrolysis vapors into hydrocarbon fuel precursors. Green Chemistry 17 (4):2362–68. doi:10.1039/c4gc02238f.
  • Miyake, K., Y. Hirota, K. Ono, Y. Uchida, S. Tanaka, and N. Nishiyama. 2016. Direct and selective conversion of methanol to para-xylene over Zn ion doped ZSM-5/silicalite-1 core-shell zeolite catalyst. Journal of Catalysis 342:63–66. doi:10.1016/j.jcat.2016.07.008.
  • Peng, F., W. Yi, Z. Li, and Y. Li. 2019. Comparative study on fast pyrolysis of agricultural straw residues based on heat carrier circulation heating. Bioresource Technology 271:136–42. doi:10.1016/j.biortech.2018.09.099.
  • Peng, F., A. Zhang, S. Luo, W. Yi, S. Hu, and Y. Zhang. 2019. Catalytic steam reforming of biomass-derived acetic acid over two supported ni catalysts for hydrogen-rich syngas production. ACS Omega 4 (8):13585–93. doi:10.1021/acsomega.9b01985.
  • Rahman, M. M., M. Chai, M. Sarker, Nishu, and R. H. Liu. 2020. Catalytic pyrolysis of pinewood over ZSM-5 and CaO for aromatic hydrocarbon: Analytical Py-GC/MS study. Journal of the Energy Institute 93 (1):425–35. doi:10.1016/j.joei.2019.01.014.
  • Ryu, H. W., H. W. Lee, J. Jae, and Y. Park. 2019. Catalytic pyrolysis of lignin for the production of aromatic hydrocarbons: Effect of magnesium oxide catalyst. Energy 179:669–75. doi:10.1016/j.energy.2019.05.015.
  • Shafaghat, H., P. S. Rezaei, D. Ro, J. Jae, B. Kim, S. Jung, B. H. Sung, and Y. Park. 2017. In-situ catalytic pyrolysis of lignin in a bench-scale fixed bed pyrolyzer. Journal of Industrial and Engineering Chemistry 54:447–53. doi:10.1016/j.jiec.2017.06.026.
  • Stefanidis, S. D., S. A. Karakoulia, K. G. Kalogiannis, E. F. Iliopoulou, A. Delimitis, H. Yiannoulakis, T. Zampetakis, A. A. Lappas, and K. S. Triantafyllidis. 2016. Natural magnesium oxide (MgO) catalysts: A cost-effective sustainable alternative to acid zeolites for the in situ upgrading of biomass fast pyrolysis oil. Applied Catalysis B, Environmental 196:155–73. doi:10.1016/j.apcatb.2016.05.031.
  • Stummann, M., M. Høj, J. Gabrielsen, L. Clausen, P. Jensen, and A. Jensen. 2021. A perspective on catalytic hydropyrolysis of biomass. Renewable and Sustainable Energy Reviews 143:110960. doi:10.1016/j.rser.2021.110960.
  • Sun, T. L., T. Lei, Z. Li, Z. Zhang, S. Yang, X. Xin, M. Zhang, X. He, Q. Zhang, and L. Zhang. 2021. Catalytic co-pyrolysis of corn stalk and polypropylene over Zn-Al modified MCM-41 catalysts for aromatic hydrocarbon-rich oil production. Industrial Crops and Products 171:113843. doi:10.1016/j.indcrop.2021.113843.
  • Wang, P., Y. Zheng, X. Liang, Z. Jia, X. Wang, Y. Guo, and L. Ren. 2021. Pyrolysis of sugarcane bagasse for bio-chemicals production catalyzed by micro-mesoporous composite molecular sieves. Chemical Papers 75 (7):3283–93. doi:10.1007/s11696-020-01425-6.
  • Wang, Y., A. Akbarzadeh, L. Chong, J. Du, N. Tahir, and M. K. Awasthi. 2022. Catalytic pyrolysis of lignocellulosic biomass for bio-oil production: A review. Chemosphere 297:134181. doi:10.1016/j.chemosphere.2022.134181.
  • Wu, J., G. Chang, X. Li, J. Li, and Q. Guo. 2020. Effects of NaOH on the catalytic pyrolysis of lignin/HZSM-5 to prepare aromatic hydrocarbons. Journal of Analytical and Applied Pyrolysis 146:104775. doi:10.1016/j.jaap.2020.104775.
  • Yu, Z. T., L. Jiang, Y. Wang, Y. Li, L. Ke, Q. Yang, Y. Peng, J. Xu, L. Dai, Q. Wu, et al. 2020. Catalytic pyrolysis of woody oil over SiC foam-MCM41 catalyst for aromatic-rich bio-oil production in a dual microwave system. Journal of Cleaner Production 255:120179. doi:10.1016/j.jclepro.2020.120179.
  • Yuan, R., and Y. Shen. 2019. Catalytic pyrolysis of biomass-plastic wastes in the presence of MgO and MgCO3 for hydrocarbon-rich oils production. Bioresource Technology 293:122076. doi:10.1016/j.biortech.2019.122076.
  • Zhang, C., X. Hu, H. Guo, T. Wei, D. Dong, G. Hu, S. Hu, J. Xiang, Q. Liu, and Y. Wang. 2018. Pyrolysis of poplar, cellulose and lignin: Effects of acidity and alkalinity of the metal oxide catalysts. Journal of Analytical and Applied Pyrolysis 134:590–605. doi:10.1016/j.jaap.2018.08.009.
  • Zhang, C. T., L. Zhang, Q. Li, Y. Wang, Q. Liu, T. Wei, D. Dong, S. Salavati, M. Gholizadeh, and X. Hu. 2019. Catalytic pyrolysis of poplar wood over transition metal oxides: Correlation of catalytic behaviors with physiochemical properties of the oxides. Biomass & Bioenergy 124:125–41. doi:10.1016/j.biombioe.2019.03.017.
  • Zhang, W., H. Xia, Y. Deng, Q. Zhang, and C. Xin. 2022. Slow pyrolysis of waste navel orange peels with metal oxide catalysts to produce high-grade bio-oil. Green Processing and Synthesis 11 (1):218–28. doi:10.1515/gps-2022-0022.
  • Zhang, Y., W. Yi, P. Fu, Z. Li, N. Wang, and C. Tian. 2019. Numerical simulation and experiment on catalytic upgrading of biomass pyrolysis vapors in V-shaped downer reactors. Bioresource Technology 274:207–14. doi:10.1016/j.biortech.2018.11.093.
  • Zheng, Q., D. Zhang, P. Fu, A. Wang, Y. Sun, Z. Li, and Q. Fan. 2022. Insight into the fast pyrolysis of lignin: Unraveling the role of volatile evolving and char structural evolution. Chemical Engineering Journal 437:135316. doi:10.1016/j.cej.2022.135316.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.