242
Views
7
CrossRef citations to date
0
Altmetric
Research Article

An eco-friendly strategy for recovery of H2-CH4-rich syngas, benzene-rich tar and carbon nanoparticles from surgical mask waste using an updraft gasifier system

, , , &
Pages 5063-5080 | Received 19 Jan 2023, Accepted 12 Apr 2023, Published online: 02 May 2023

References

  • Aguado, R., D. Vera, F. Jurado, and G. Beltrán. 2022. An integrated gasification plant for electric power generation from wet biomass: Toward a sustainable production in the olive oil industry. Biomass Conv Bioref. doi:10.1007/s13399-021-02231-0.
  • Akkoli, K. M., N. R. Banapurmath, S. G, M. E. M. Soudagar, T. M. Y. Khan, M. A. A. Baig, M. A. Mujtaba, N. Hossain, K. Shahapurkar, A. Elfasakhany et al. 2021. Effect of producer gas from redgram stalk and combustion chamber types on the emission and performance characteristics of diesel engine. Energies 14:5879. doi:10.3390/en14185879.
  • Ali, A. M., M. Inayat, A. A. Zahrani, K. Shahzad, M. Shahbaz, S. A. Sulaiman, and H. Sadig. 2022. Process optimization and economic evaluation of air gasification of Saudi Arabian date palm fronds for H2-rich syngas using response surface methodology. Fuel 316:123359. doi:https://doi.org/10.1016/j.fuel.2022.123359.
  • Andriatoavina, D. A. S., D. A. H. Fakra, N. A. M. N. Razafindralambo, J. P. Praene, and J. M. M. Andriamampianina. 2021. Potential of fueling spark-ignition engines with syngas or syngas blends for power generation in rural electrification: A short review and S.W.O.T. analysis. Sustainable Energy Technologies and Assessments 47:101510. doi:10.1016/j.seta.2021.101510.
  • Anis, S., and Z. A. Zainal. 2011. Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: A review. Renewable and Sustainable Energy Reviews 15 (5):2355–77. doi:https://doi.org/10.1016/j.rser.2011.02.018.
  • Ardila-Suárez, C., J. Pablo Villegas, E. Lins de Barros Neto, T. Ghislain, and J. M. Lavoie. 2022. Waste surgical masks to fuels via thermochemical co-processing with waste motor oil and biomass. Bioresource Technology 348:126798. doi:10.1016/j.biortech.2022.126798.
  • Asim, N., M. Badiei, and K. Sopian. 2021. Review of the valorization options for the proper disposal of face masks during the COVID-19 pandemic. Environmental Technology and Innovation 23:101797. doi:https://doi.org/10.1016/j.eti.2021.101797.
  • Awais, M., M. M. Omar, A. Munir, W. Li, M. Ajmal, S. Hussain, S. A. Ahmad, and A. Ali. 2022. Co-gasification of different biomass feedstock in a pilot-scale (24 kWe) downdraft gasifier: An experimental approach. Energy 238:121821. doi:https://doi.org/10.1016/j.energy.2021.121821.
  • Basu, P. 2018. Biomass gasification, pyrolysis and torrefaction: Practical design and theory, biomass gasification, pyrolysis and torrefaction: Practical design and theory. doi:10.1016/C2016-0-04056-1.
  • Cavalli, A., R. Tetteroo, M. Graziadio, and P. V. Aravind. 2021. Catalytic reforming of acetic acid as main primary tar compound from biomass updraft gasifiers: Screening of suitable catalysts and operating conditions. Biomass & Bioenergy 146:105982. doi:10.1016/j.biombioe.2021.105982.
  • Chalermsinsuwan, B., L. Yueh-Heng, and K. Manatura. 2023. Optimization of gasification process parameters for COVID-19 medical masks using response surface methodology. Alexandria Engineering Journal 62:335–47. doi:10.1016/j.aej.2022.07.037.
  • Dharmaraj, S., V. Ashokkumar, K. W. Chew, S. R. Chia, P. L. Show, and C. Ngamcharussrivichai. 2021. Novel strategy in biohydrogen energy production from COVID-19 plastic waste: A critical review. International Journal of Hydrogen Energy 47 (100):42051–74. doi:10.1016/j.ijhydene.2021.08.236.
  • Eimontas, J., N. Striūgas, and M. A. Abdelnaby. 2022. Thermochemical analysis of improvised energetic materials by laser-heating calorimetry. Thermochimica acta 718. doi:10.1016/j.tca.2022.179198.
  • Eimontas, J., K. Zakarauskas, and N. Striūgas. 2021. Microcrystalline paraffin wax, biogas, carbon particles and aluminum recovery from metallised food packaging plastics using pyrolysis, mechanical and chemical treatments. Journal of Cleaner Production. doi:10.1016/j.jclepro.2021.125878.
  • Faraji, M., and M. Saidi. 2022. Process simulation and optimization of groundnut shell biomass air gasification for hydrogen-enriched syngas production. International Journal of Hydrogen Energy 47 (28):13579–91. doi:10.1016/j.ijhydene.2022.02.105.
  • Farooq, A., J. Lee, H. Song, C. H. Ko, I. H. Lee, Y. M. Kim, G. H. Rhee, S. Pyo, and Y. K. Park. 2022. Valorization of hazardous COVID-19 mask waste while minimizing hazardous byproducts using catalytic gasification. Journal of Hazardous Materials 423:127222. doi:10.1016/j.jhazmat.2021.127222.
  • Fatema, J., T. Ahmed, M. Minhajul Islam, N. Sakib, A. M. S. Chowdhury, and P. Haque. 2022. Gasification of kitchen wastes in an updraft fluidized bed gasifier and simulation of the process with Aspen Plus. Journal of Cleaner Production 371:133670. doi:10.1016/j.jclepro.2022.133670.
  • Gao, S., J. Wang, Z. Wang, J. Zhao, and Y. Fang. 2014. Effect of CO on the CH4 evolution during fast pyrolysis of lignite in reductive atmospheres. Journal of Analytical and Applied Pyrolysis 106:104–11. doi:10.1016/j.jaap.2014.01.006.
  • Guo, F., X. Jia, S. Liang, N. Zhou, P. Chen, and R. Ruan. 2020. Development of biochar-based nanocatalysts for tar cracking/reforming during biomass pyrolysis and gasification. Bioresource Technology 298:122263. doi:https://doi.org/10.1016/j.biortech.2019.122263.
  • He, Q., Q. Guo, K. Umeki, L. Ding, F. Wang, and G. Yu. 2021. Soot formation during biomass gasification: A critical review. Renewable and Sustainable Energy Reviews 139:110710. doi:https://doi.org/10.1016/j.rser.2021.110710.
  • Hu, S., H. Tian, S. Zhang, D. Wang, G. Gong, W. Yue, K. Liu, S. Hong, R. Wang, Q. Yuan, et al. 2022. Fabrication of a high-performance and reusable planar face mask in response to the COVID-19 pandemic. Engineering 9:101–10. doi:https://doi.org/10.1016/j.eng.2021.07.022.
  • Ismail, T. M., and M. A. El-Salam. 2017. Parametric studies on biomass gasification process on updraft gasifier high temperature air gasification. Applied Thermal Engineering 112:1460–73. doi:https://doi.org/10.1016/j.applthermaleng.2016.10.026.
  • Jahromi, R., M. Rezaei, S. Hashem Samadi, and H. Jahromi. 2021. Biomass gasification in a downdraft fixed-bed gasifier: Optimization of operating conditions. Chemical Engineering Science 231:116249. doi:https://doi.org/10.1016/j.ces.2020.116249.
  • James, A. M., W. Yuan, M. D. Boyette, and D. Wang. 2015. The effect of air flow rate and biomass type on the performance of an updraft biomass gasifier. BioResources 10 (2). doi:https://doi.org/10.15376/biores.10.2.3615-3624.
  • James, R., A. M. Yuan, W. Boyette, and M. D. Wang. 2018. Airflow and insulation effects on simultaneous syngas and biochar production in a top-lit updraft biomass gasifier. Renewable Energy 117:116–24. doi:10.1016/j.renene.2017.10.034.
  • Jung, S., S. Lee, X. Dou, and E. E. Kwon. 2021. Valorization of disposable COVID-19 mask through the thermo-chemical process. Chemical Engineering Journal 405:126658. doi:10.1016/j.cej.2020.126658.
  • Jurado, L., V. Papaefthimiou, S. Thomas, and A. C. Roger. 2021. Upgrading syngas from wood gasification through steam reforming of tars over highly active Ni-perovskite catalysts at relatively low temperature. Applied Catalysis B, Environmental 299:120687. doi:10.1016/j.apcatb.2021.120687.
  • Kalpokaitė-Dičkuvienė, R., A. Baltušnikas, I. Pitak, and S. I. Lukošiūtė. 2021. A new strategy for functionalization of char derived from pyrolysis of textile waste and its application as hybrid fillers (CNTs/char and graphene/char) in cement industry. Journal of Cleaner Production. doi:10.1016/j.jclepro.2021.128058.
  • Kim, S., and J. Kim. 2022. Feasibility assessment of hydrogen-rich syngas spark-ignition engine for heavy-duty long-distance vehicle application. Energy Conversion and Management 252:115048. doi:10.1016/j.enconman.2021.115048.
  • Kuo, J. H., C. L. Lin, and C. Y. Ho. 2021. Effect of fluidization/gasification parameters on hydrogen generation in syngas during fluidized-bed gasification process. International Journal of Hydrogen Energy 47 (96):40656–63. doi:10.1016/j.ijhydene.2021.03.070.
  • Lee, S. B., J. Lee, Y. F. Tsang, Y. M. Kim, J. Jae, S. C. Jung, and Y. K. Park. 2021. Production of value-added aromatics from wasted COVID-19 mask via catalytic pyrolysis. Environmental Pollution 283:117060. doi:10.1016/j.envpol.2021.117060.
  • Li, X., J. Chen, Q. Hu, P. Chu, Y. Dai, and C. H. Wang. 2021. Solar-driven gasification in an indirectly-irradiated thermochemical reactor with a clapboard-type internally-circulating fluidized bed. Energy Conversion and Management 248:114795. doi:10.1016/j.enconman.2021.114795.
  • Li, B., C. F. Magoua Mbeugang, Y. Huang, D. Liu, Q. Wang, and S. Zhang. 2022. A review of CaO based catalysts for tar removal during biomass gasification. Energy 244:123172. doi:https://doi.org/10.1016/j.energy.2022.123172.
  • Li, C., X. Yuan, Z. Sun, M. Suvarna, X. Hu, X. Wang, and Y. S. Ok. 2022, Feb. Pyrolysis of waste surgical masks into liquid fuel and its life-cycle assessment. ( Epub 2021 Dec 22. PMID: 34953989) Bioresource Technology 346:126582. doi: 10.1016/j.biortech.2021.126582.
  • Lonchay, W., G. Bagnato, and A. Sanna. 2022. Highly selective hydropyrolysis of lignin waste to benzene, toluene and xylene in presence of zirconia supported iron catalyst. Bioresource Technology 361 (Oct):127727. doi:10.1016/j.biortech.2022.127727.
  • Manafi Moghadam, M., M. Zamani, and S. A. Pourmousavi. 2021. Synthesis and characterization of new potential high-energy materials based on fullerene soot nanoparticles and nitroaryl diazonium ions. The Journal of Physics and Chemistry of Solids 154:110101. doi:https://doi.org/10.1016/j.jpcs.2021.110101.
  • Martin, J. W., G. J. McIntosh, R. Arul, R. N. Oosterbeek, M. Kraft, and T. Söhnel. 2017. Giant fullerene formation through thermal treatment of fullerene soot. Carbon 125:132–38. doi:https://doi.org/10.1016/j.carbon.2017.09.045.
  • Mashiur Rahman, M. 2022. Test and performance optimization of nozzle inclination angle and swirl combustor in a low-tar biomass gasifier: A biomass power generation system perspective. Carbon Resources Conversion 5 (2):139–49. doi:https://doi.org/10.1016/j.crcon.2022.01.002.
  • Morgana, S., B. Casentini, and S. Amalfitano. 2021. Uncovering the release of micro/nanoplastics from disposable face masks at times of COVID-19. Journal of Hazardous Materials 419:126507. doi:https://doi.org/10.1016/j.jhazmat.2021.126507.
  • Nam, J. Y., T. R. Lee, D. Tokmurzin, S. J. Park, H. W. Ra, S. J. Yoon, T. Y. Mun, S. M. Yoon, J. H. Moon, J. G. Lee, et al. 2023 Jan 1. Hydrogen-rich gas production from disposable COVID-19 mask by steam gasification. Fuel 331:125720. doi: 10.1016/j.fuel.2022.125720.
  • Ngamsidhiphongsa, N., P. Ponpesh, A. Shotipruk, and A. Arpornwichanop. 2020. Analysis of the Imbert downdraft gasifier using a species-transport CFD model including tar-cracking reactions. Energy Conversion and Management 213:112808. doi:https://doi.org/10.1016/j.enconman.2020.112808.
  • Nisamaneenate, J., D. Atong, and V. Sricharoenchaikul. 2012 Dec. Steam reforming of tar model compound using Pd catalyst on alumina tube. Environmental Technology. 33 (22–24):2497–505. doi:10.1080/09593330.2012.668942.
  • Nunes, L. J. R. 2022. Biomass gasification as an industrial process with effective proof-of-concept: A comprehensive review on technologies, processes and future developments. Results in Engineering 14:100408. doi:https://doi.org/10.1016/j.rineng.2022.100408.
  • Park, C., H. Choi, K. Y. Andrew Lin, E. E. Kwon, and J. Lee. 2021. COVID-19 mask waste to energy via thermochemical pathway: Effect of Co-Feeding food waste. Energy 230:120876. doi:10.1016/j.energy.2021.120876.
  • Pranolo, S. H., J. Waluyo, S. D. Paryanto, R. B. Permana, I. Delayaski, N. Erwanda, A. Alhaq, P. A. ’izzuddin, and F. A. Putro. 2022. Feasible tar cleaning method of producer gas from palm kernel shell and mahogany fruit shell gasification. Materials Today: Proceedings 63:S237–43. doi:10.1016/j.matpr.2022.02.431.
  • Quintero-Coronel, D. A., Y. A. Lenis-Rodas, L. Corredor, P. Perreault, A. Bula, and A. Gonzalez-Quiroga. 2022. Co-gasification of biomass and coal in a top-lit updraft fixed bed gasifier: Syngas composition and its interchangeability with natural gas for combustion applications. Fuel 316:123394. doi:https://doi.org/10.1016/j.fuel.2022.123394.
  • Ray, S. S., H. K. Lee, D. T. T. Huyen, S. S. Chen, and Y. N. Kwon. 2022. Microplastics waste in environment: A perspective on recycling issues from PPE kits and face masks during the COVID-19 pandemic. Environmental Technology and Innovation 26:102290. doi:10.1016/j.eti.2022.102290.
  • Saleem, F., A. Abbas, A. Rehman, A. H. Khoja, S. R. Naqvi, M. Y. Arshad, K. Zhang, and A. Harvey. 2022. Decomposition of benzene as a biomass gasification tar in CH4 carrier gas using non-thermal plasma: Parametric and kinetic study. Journal of the Energy Institute 102:190–95. doi:https://doi.org/10.1016/j.joei.2022.03.009.
  • Sangkham, S. 2020a. Face mask and medical waste disposal during the novel COVID-19 pandemic in Asia. Case Studies in Chemical and Environmental Engineering 2:100052. doi:https://doi.org/10.1016/j.cscee.2020.100052.
  • Sangkham, S. 2020b. Face mask and medical waste disposal during the novel COVID-19 pandemic in Asia. Case Studies in Chemical and Environmental Engineering 2:100052. doi:https://doi.org/10.1016/j.cscee.2020.100052.
  • Santos-Rosales, V., C. López-Iglesias, A. Sampedro-Viana, C. Alvarez-Lorenzo, S. Ghazanfari, B. Magariños, and C. A. García-González. 2022. Supercritical CO2 sterilization: An effective treatment to reprocess FFP3 face masks and to reduce waste during COVID-19 pandemic. The Science of the Total Environment 826:154089. doi:https://doi.org/10.1016/j.scitotenv.2022.154089.
  • Sivamaran, V., V. Balasubramanian, M. Gopalakrishnan, V. Viswabaskaran, and A. G. Rao. 2022. Combined synthesis of carbon nanospheres and carbon nanotubes using thermal chemical vapor deposition process. Chemical Physics Impact 4:100072. doi:https://doi.org/10.1016/j.chphi.2022.100072.
  • Stewart, D. J. C., L. V. Fisher, M. E. A. Warwick, D. Thomson, and A. R. Barron. 2022. Facemasks and ferrous metallurgy: Improving gasification reactivity of low-volatile coals using waste COVID-19 facemasks for iron making application. Scientific Reports 12 (1):2693. doi:10.1038/s41598-022-06691-w.
  • Striūgas, N., and J. Eimontas. 2022. Inga stasiulaitiene, kęstutis zakarauskas, pyrolysis of all layers of surgical mask waste as a mixture and its life-cycle assessment. Sustainable Production and Consumption. doi:10.1016/j.spc.2022.05.011.
  • Striūgas, K., J. Eimontas, N. Zakarauskas, A. Mohamed, and A. Mohamed. 2021. A new strategy for using lint-microfibers generated from clothes dryer as a sustainable source of renewable energy. The Science of the Total Environment 762. doi:10.1016/j.scitotenv.2020.143107.
  • Su, P., W. Liu, Y. Hong, Y. Ye, and S. Huang. 2022. Vapor deposition of ultrathin hydrophilic polymer coatings enabling candle soot composite for highly sensitive humidity sensors. Materials Today Chemistry 24:100786. doi:https://doi.org/10.1016/j.mtchem.2022.100786.
  • Tezer, O., M. U. O. Nazlican Karabag, A. Ongen, A. Ayol, and A. Ayol. 2022. Comparison of green waste gasification performance in updraft and downdraft fixed bed gasifiers. International Journal of Hydrogen Energy 47 (74):31864–76. doi:10.1016/j.ijhydene.2022.04.077.
  • Toth, P. 2021. Nanostructure quantification of turbostratic carbon by HRTEM image analysis: State of the art, biases, sensitivity and best practices. Carbon 178:688–707. doi:https://doi.org/10.1016/j.carbon.2021.03.043.
  • Trubetskaya, A., A. J. Hunt, V. L. Budarin, T. M. Attard, J. Kling, G. R. Surup, M. Arshadi, and K. Umeki. 2021. Supercritical extraction and microwave activation of wood wastes for enhanced syngas production and generation of fullerene-like soot particles. Fuel Processing Technology 212:106633. doi:https://doi.org/10.1016/j.fuproc.2020.106633.
  • Tuomi, S., E. Kurkela, P. Simell, and M. Reinikainen. 2015. Behaviour of tars on the filter in high temperature filtration of biomass-based gasification gas. Fuel 139:220–31. doi:https://doi.org/10.1016/j.fuel.2014.08.051.
  • Vikraman, V. K., P. Subramanian, D. P. Kumar, S. Sriramajayam, R. Mahendiran, and S. Ganapathy. 2022. Air flow rate and particle size effect on gasification of arecanut husk with preheated air through waste heat recovery from syngas. Bioresource Technology Reports 17:100977. doi:https://doi.org/10.1016/j.biteb.2022.100977.
  • von Berg, L., G. Pongratz, A. Pilatov, H. Almuina-Villar, C. Hochenauer, R. Scharler, and A. Anca-Couce. 2021. Correlations between tar content and permanent gases as well as reactor temperature in a lab-scale fluidized bed biomass gasifier applying different feedstock and operating conditions. Fuel 305:121531. doi:https://doi.org/10.1016/j.fuel.2021.121531.
  • Wang, Z. C., X. Cai, K. Li, Y. Y. Ye, Z. X. Zhang, Y. Q. Liu, D. Wang, and S. R. Li. 2021. LiBr hydrate as reaction medium for preparation of carbon spheres from wood powders via hydrothermal carbonization. Diamond and Related Materials 113:108295. doi:10.1016/j.diamond.2021.108295.
  • Wang, X., Q. Jin, L. Wang, S. Bai, H. Mikulčić, M. Vujanović, and H. Tan. 2019. Synergistic effect of biomass and polyurethane waste co-pyrolysis on soot formation at high temperatures. Journal of Environmental Management 239:306–15. doi:https://doi.org/10.1016/j.jenvman.2019.03.073.
  • Wang, J., S. Zhang, X. Dan, and H. Zhang. 2022. Catalytic activity evaluation and deactivation progress of red mud/carbonaceous catalyst for efficient biomass gasification tar cracking. Fuel. doi:10.1016/j.fuel.2022.124278.
  • Ward, C., H. Goldstein, R. Maurer, D. Thimsen, B. J. Sheets, R. Hobbs, F. Isgrigg, R. Steiger, D. Revay Madden, A. Porcu, et al. 2020. Making coal relevant for small scale applications: Modular gasification for syngas/engine CHP applications in challenging environments. Fuel 267:117303. doi:https://doi.org/10.1016/j.fuel.2020.117303.
  • Wiyono, A., I. M. Gandidi, E. T. Berman, P. N. A. Mutaufiq, and N. A. Pambudi. 2020. Design, development and testing of integrated downdraft gasifier and multi IGCS system of MSW for remote areas. Case Studies in Thermal Engineering 20:100612. doi:10.1016/j.csite.2020.100612.
  • Wu, R., J. Beutler, C. Price, and L. L. Baxter. 2020. Biomass char particle surface area and porosity dynamics during gasification. Fuel 264:116833. doi:https://doi.org/10.1016/j.fuel.2019.116833.
  • Wu, Z., F. Fan, J. Yan, H. Chen, X. Hu, and M. Su. 2022. An adaptable direct simulation monte carlo method for simulating acoustic agglomeration of solid particles. Chemical Engineering Science 249:117298. doi:https://doi.org/10.1016/j.ces.2021.117298.
  • Yalcin, E., A. M. Ozdemir, B. V. Kok, M. Yilmaz, and B. Yilmaz. 2022. Influence of pandemic waste face mask on rheological, physical and chemical properties of bitumen. Construction and Building Materials 337:127576. doi:https://doi.org/10.1016/j.conbuildmat.2022.127576.
  • Yousef, J. E., N. Striūgas, M. Ali Abdelnaby, and M. A. Abdelnaby. 2021. Pyrolysis kinetic behaviour and TG-FTIR-GC–MS analysis of coronavirus face masks. Journal of Analytical and Applied Pyrolysis 156:105118. doi:10.1016/j.jaap.2021.105118.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.