138
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Experimental investigation on thermal management of fuel cell by integrating phase change material in the cavities of the fin-based cooling plate

, ORCID Icon, , &
Pages 5267-5280 | Received 20 May 2022, Accepted 24 Feb 2023, Published online: 03 May 2023

References

  • Bai, Y., C. Zhang, H. Duan, S. Jiang, Z. Zhou, D. Grouset, M. Zhang, and X. Ye. 2021. Modeling and optimal control of the fast filling process of hydrogen to fuel cell vehicle. Journal of Energy Storage 35:102306. doi:10.1016/j.est.2021.102306.
  • Barbir, F. 2013. Chapter Ten - fuel cell applications, PEM Fuel Cells. Second ed. Academic Press 373–434. doi:10.1016/C2011-0-06706-6.
  • Chang, H., F. Cai, X. Yu, C. Duan, S. H. Chan, and Z. Tu. 2023. Experimental study on the thermal management of an open-cathode air-cooled proton exchange membrane fuel cell stack with ultra-thin metal bipolar plates. Energy 263:125724. doi:10.1016/j.energy.2022.125724.
  • Chen, Q., G. Zhang, X. Zhang, C. Sun, K. Jiao, and Y. Wang. 2021. Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability. Applied Energy 286:116496. doi:10.1016/j.apenergy.2021.116496.
  • Clement, J., and X. Wang. 2013. Experimental investigation of pulsating heat pipe performance with regard to fuel cell cooling application. Applied Thermal Engineering 50 (1):268–74. doi:10.1016/j.applthermaleng.2012.06.017.
  • De las Heras, A., F. J. Vivas, F. Segura, M. J. Redondo, and J. M. Andújar. Air-cooled fuel cells: Keys to design and build the oxidant/cooling system. Renewable Energy. 125:1–20. 2018 Sep 1. doi:10.1016/j.renene.2018.02.077.
  • Di Giorgio, P., G. Di Ilio, E. Jannelli, and F. V. Conte. 2022. Innovative battery thermal management system based on hydrogen storage in metal hydrides for fuel cell hybrid electric vehicles. Applied Energy 315:118935. doi:10.1016/j.apenergy.2022.118935.
  • Dukhan, N., and A. A. Hmad. 2022. Thermal management of fuel-cell stacks using air flow in open-cell metal foam. International Journal of Thermal Sciences. 172:107370. doi:10.1016/j.ijthermalsci.2021.107370.
  • Faghri, A., and Z. Guo. 2005. Challenges and opportunities of thermal management issues related to fuel cell technology and modeling. International Journal of Heat and Mass Transfer 48(19–20):3891–920. doi: 10.1016/j.ijheatmasstransfer.2005.04.014.
  • Farsi, A., and M. A. Rosen. 2022. PEM fuel cell-assisted lithium ion battery electric vehicle integrated with an air-based thermal management system. International Journal of Hydrogen Energy 47 (84):35810–24. doi:10.1016/j.ijhydene.2022.08.153.
  • Ferreira-Aparicio, P., J. J. Conde, and A. M. Chaparro. 2018. 2 - fundamentals and components of portable hydrogen fuel-cell systems, portable hydrogen energy systems. Academic Press 15–39. doi:10.1016/C2016-0-04605-3.
  • Flückiger, R., A. Tiefenauer, M. Ruge, C. Aebi, A. Wokaun, and F. N. Büchi. 2007. Thermal analysis and optimization of a portable, edge-air-cooled PEFC stack. Journal of Power Sources 172 (1):324–33. doi:10.1016/j.jpowsour.2007.05.079.
  • Gong, X., F. Wang, H. Wang, J. Tan, Q. Lai, and H. Han. 2017. Heat transfer enhancement analysis of tube receiver for parabolic trough solar collector with pin fin arrays inserting. Solar Energy 144:185–202. doi:10.1016/j.solener.2017.01.020.
  • Huang, R., Z. Li, W. Hong, Q. Wu, and X. Yu. 2020. Experimental and numerical study of PCM thermophysical parameters on lithium-ion battery thermal management. Energy Reports 6:8–19. doi:10.1016/j.egyr.2019.09.060.
  • Huang, Y., X. Xiao, H. Kang, J. Lv, R. Zeng, and J. Shen. 2022. Thermal management of polymer electrolyte membrane fuel cells: A critical review of heat transfer mechanisms, cooling approaches, and advanced cooling techniques analysis. Energy Conversion and Management 254:115221. doi:10.1016/j.enconman.2022.115221.
  • Jacome, A., C. Dépature, L. Boulon, and J. Solano. 2021. A benchmark of different starting modes of a passive fuel cell/ultracapacitor hybrid source for an electric vehicle application. Journal of Energy Storage 35:102280. doi:10.1016/j.est.2021.102280.
  • Jörissen, L. 2009. APPLICATIONS – STATIONARY | Residential Energy Supply: Fuel Cells. In Encyclopedia of electrochemical power sources 108–23. Elsevier. doi:10.1016/B978-044452745-5.00346-4.
  • Khan, Z., Z. Khan, and A. Ghafoor. 2016. A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility. Energy Conversion and Management 115:132–58. doi:10.1016/j.enconman.2016.02.045.
  • Khasanshin, T. S., and T. B. Zykova. 1989. Specific heat of saturated monatomic alcohols, Inzh-Fiz. Journal of Engineering Physics 56 (6):991–94. doi:10.1007/BF00870444.
  • Killion, J. D., S. Garimella, and M. D. Determan. 2011. Performance predictions of a moisture management device for fuel cell applications. Journal of Thermal Science and Engineering Applications 3 (3). doi:10.1115/1.4004426.
  • Kumar, R. R., S. Suresh, T. Suthakar, and S. Raja R. 2021. Thermal management of polymer electrolyte membrane fuel cell with stearyl alcohol and fans combined. Journal of Energy Storage 41:102847. doi:10.1016/j.est.2021.102847.
  • Lee, J., M. H. Gundu, N. Lee, K. Lim, S. W. Lee, S. S. Jang, J. Y. Kim, and H. Ju. 2020. Innovative cathode flow-field design for passive air-cooled polymer electrolyte membrane (PEM) fuel cell stacks. International Journal of Hydrogen Energy 45 (20):11704–13. doi:10.1016/j.ijhydene.2019.07.128.
  • Ling, Z., F. Wang, X. Fang, X. Gao, and Z. Zhang. 2015. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling. Applied Energy 148:403–09. doi:10.1016/j.apenergy.2015.03.080.
  • Luo, M., J. Song, Z. Ling, Z. Zhang, and X. Fang. 2021. Phase change material coat for battery thermal management with integrated rapid heating and cooling functions from− 40° C to 50° C. Materials Today Energy 20:100652. doi:10.1016/j.mtener.2021.100652.
  • Mahmoodi, F., and R. Rahimi. 2020. Experimental and numerical investigating a new configured thermal coupling between metal hydride tank and PEM fuel cell using heat pipes. Applied Thermal Engineering 178:115490. doi:10.1016/j.applthermaleng.2020.115490.
  • Nguyen, H. Q., and B. Shabani. 2020. Proton exchange membrane fuel cells heat recovery opportunities for combined heating/cooling and power applications. Energy Conversion and Management 204:112328. doi:10.1016/j.enconman.2019.112328.
  • Nguyen, H. Q., B. Shabani, A. Babapoor, M. Azizi, and G. Karimi. 2015. Thermal management of a Li-ion battery using carbon fiber-PCM compositesReview of metal hydride hydrogen storage thermal management for use in the fuel cell systems. Applied Thermal EngineeringInternational Journal of Hydrogen Energy 46 (8262):31699–726–3172631699–31726. 2021 Sep 8. doi:10.1016/j.ijhydene.2021.07.057.
  • Oro, M. V., and E. Bazzo. 2015. Flat heat pipes for potential application in fuel cell cooling. Applied Thermal Engineering 90:848–57. doi:10.1016/j.applthermaleng.2015.07.055.
  • Philip, N., C. Veerakumar, and A. Sreekumar. 2020. Lauryl alcohol and stearyl alcohol eutectic for cold thermal energy storage in buildings: Preparation, thermophysical studies and performance analysis. Journal of Energy Storage 31:101600. doi:10.1016/j.est.2020.101600.
  • Raguman, A., P. Vedagiri. 2022. A review on recent approaches in thermal and water management of polymer electrolyte membrane fuel cells. Materials Today: Proceedings 68: 1975–1979. doi:10.1016/j.matpr.2022.08.226.
  • Ramezanizadeh, M., M. A. Nazari, M. H. Ahmadi, and L. Chen. A review on the approaches applied for cooling fuel cells. International Journal of Heat and Mass Transfer. 139:517–25. 2019. doi:10.1016/j.ijheatmasstransfer.2019.05.032.
  • Rashidi, S., N. Karimi, B. Sunden, K. C. Kim, A. G. Olabi, and O. Mahian. 2022. Progress and challenges on the thermal management of electrochemical energy conversion and storage technologies: Fuel cells, electrolyzers, and supercapacitors. Progress in Energy and Combustion Science 88:100966. doi:10.1016/j.pecs.2021.100966.
  • Safdari, M., R. Ahmadi, and S. Sadeghzadeh. 2020. Numerical investigation on PCM encapsulation shape used in the passive-active battery thermal management. Energy 193:116840. doi:10.1016/j.energy.2019.116840.
  • Sasmito, A. P., E. Birgersson, K. W. Lum, and A. S. Mujumdar. 2012. Fan selection and stack design for open-cathode polymer electrolyte fuel cell stacks. Renewable Energy 37 (1):325–32. doi:10.1016/j.renene.2011.06.037.
  • Sun, Z., R. Fan, F. Yan, T. Zhou, and N. Zheng. 2019. Thermal management of the lithium-ion battery by the composite PCM-Fin structures. International Journal of Heat and Mass Transfer 145:118739. doi:10.1016/j.ijheatmasstransfer.2019.118739.
  • Uyar, T. S., and D. Beşikci. 2017. Integration of hydrogen energy systems into renewable energy systems for better design of 100% renewable energy communities. International Journal of Hydrogen Energy 42 (4):2453–56. doi:10.1016/j.ijhydene.2016.09.086.
  • Wang, Y., D. F. Diaz, K. S. Chen, Z. Wang, and X. C. Adroher. A review of materials, technological status, and fundamentals of PEM fuel cells. Materials Today. 32:178–203. 2020 Jan 1. doi:10.1016/j.mattod.2019.06.005.
  • Wang, L., Z. Quan, Y. Zhao, M. Yang, and H. Jing. 2023. Heat transfer process analysis and performance research of micro heat pipe array applied for the thermal management of proton exchange membrane fuel cells. Applied Thermal Engineering 219:119531. doi:10.1016/j.applthermaleng.2022.119531.
  • Wang, L., Z. Quan, Y. Zhao, M. Yang, and J. Zhang. 2022. Experimental investigation on thermal management of proton exchange membrane fuel cell stack using micro heat pipe array. Applied Thermal Engineering 214:118831. doi:10.1016/j.applthermaleng.2022.118831.
  • Wen, C. Y., and G. W. Huang. 2008. Application of a thermally conductive pyrolytic graphite sheet to thermal management of a PEM fuel cell. Journal of Power Sources 178 (1):132–40. doi:10.1016/j.jpowsour.2007.12.040.
  • Wen, C. Y., Y. S. Lin, and C. H. Lu. 2009. Performance of a proton exchange membrane fuel cell stack with thermally conductive pyrolytic graphite sheets for thermal management. Journal of Power Sources 189(2):1100–05. doi:10.1016/j.jpowsour.2008.12.103.
  • Wen, C. Y., Y. S. Lin, C. H. Lu, and T. W. Luo. 2011. Thermal management of a proton exchange membrane fuel cell stack with pyrolytic graphite sheets and fans combined. International Journal of Hydrogen Energy 36 (10):6082–89. doi:10.1016/j.ijhydene.2011.02.052.
  • Zeng, T., C. Zhang, Z. Huang, M. Li, S. H. Chan, Q. Li, and X. Wu. 2019. Experimental investigation on the mechanism of variable fan speed control in open cathode PEM fuel cell. International Journal of Hydrogen Energy 44 (43):24017–27 doi:https://doi.org/10.1016/j.ijhydene.2019.07.119.
  • Zhang, G., and S. G. Kandlikar. 2012. A critical review of cooling techniques in proton exchange membrane fuel cell stacks. International Journal of Hydrogen Energy 37 (3):2412–29. doi:10.1016/j.jpowsour.2007.12.040.
  • Zhu, C., Y. Lin, and G. Fang. 2020. Preparation and thermal properties of microencapsulated stearyl alcohol with silicon dioxide shell as thermal energy storage materials. Applied Thermal Engineering 169:114943. doi:10.1016/j.applthermaleng.2020.114943.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.