93
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Receiver parameter optimization for nanofluid-based parabolic trough concentrating plant: a case study

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 5559-5576 | Received 21 Nov 2022, Accepted 03 Apr 2023, Published online: 09 May 2023

References

  • Abedrabboh, O., M. Koç, and Y. Biçer. 2022. Environmental effects sustainability performance of space-cooling technologies and approaches. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44 (4):9017–42. doi:10.1080/15567036.2022.2127979.
  • Abubakr, M., H. Amein, B. M. Akoush, M. M. El-Bakry, and M. A. Hassan. 2020. An intuitive framework for optimizing energetic and exergetic performances of parabolic trough solar collectors operating with nano fluids. Renewable Energy 157:130–49. doi:10.1016/j.renene.2020.04.160.
  • Adun, H., B. Olusola, D. Kavaz, and M. Dagbasi. 2022. Impact of data processing and robust machine learning process on accurate estimation of specific heat capacity property in energy storage applications. Journal of Energy Storage 55 (PA):105359. doi:10.1016/j.est.2022.105359.
  • Ã, N. F., S. Izquierdo, C. Montan, and N. Fueyo. 2010. Analysis of CSP plants for the definition of energy policies: The influence on electricity cost of solar multiples, capacity factors and energy storage. Energy Policy 38:6215–21. doi:10.1016/j.enpol.2010.06.009.
  • Ajeena, A. M., P. Víg, and I. Farkas. 2022. A comprehensive analysis of nanofluids and their practical applications for flat plate solar collectors: Fundamentals, thermophysical properties, stability, and difficulties. Energy Reports 8:4461–90. doi:10.1016/j.egyr.2022.03.088.
  • Allouhi, A., M. Benzakour Amine, R. Saidur, T. Kousksou, and A. Jamil. Energy and exergy analyses of a parabolic trough collector operated with nanofluids for medium and high temperature applications. Energy Conversion and Management 155:201–17. doi:10.1016/j.enconman.2017.10.059.
  • Al-Oran, O., and F. Lezsovits. 2021. Applied sciences a hybrid nanofluid of alumina and tungsten oxide for performance enhancement of a parabolic trough collector under the weather conditions of budapest. Applied Sciences 11 (11):4946. doi:10.3390/app11114946.
  • Al Oran, O., F. Lezsovits, and A. Aljawabrah. 2020. Exergy and energy amelioration for parabolic trough collector using mono and hybrid nanofluids. Journal of Thermal Analysis and Calorimetry 140 (3):1579–96. doi:10.1007/s10973-020-09371-x.
  • Ambreen, T., A. Saleem, M. Tanveer, A. K, S. A. Shehzad, and C. W. Park. 2022. Irreversibility and hydrothermal analysis of the MWCNTs/GNPs-based nanofluids for electronics cooling applications of the pin-fin heat sinks: Multiphase Eulerian-Lagrangian modeling. Case Studies in Thermal Engineering 31 (January):101806. doi:10.1016/j.csite.2022.101806.
  • Amirahmad, A., A. M. Maglad, J. Mustafa, and G. Cheraghian. 2021. Loading PCM into buildings envelope to decrease heat gain-performing transient thermal analysis on nanofluid filled solar system. Frontiers in Energy Research 9 (July):1–10. doi:10.3389/fenrg.2021.727011.
  • Ayadi, O., M. Hamdan, Y. Al-Far, A. Tayseer, and S. Al-Abbadi. 2021. Parametric investigation of nano-fluids utilization in parabolic trough collector, vol. 20, 6342–42. IEEE. doi:10.1109/IREC51415.2021.9427854.
  • Bellos, E., and C. Tzivanidis. 2018. Thermal efficiency enhancement of nanofluid-based parabolic trough collectors thermal efficiency enhancement of nanofluid-based parabolic trough collectors. Journal of Thermal Analysis and Calorimetry 135 (1):597–608. doi:10.1007/s10973-018-7056-7.
  • Bellos, E., and C. Tzivanidis. 2019. Thermal efficiency enhancement of nanofluid-based parabolic trough collectors. Journal of Thermal Analysis and Calorimetry 135 (1):597–608. doi:10.1007/s10973-018-7056-7.
  • Bellos, E., C. Tzivanidis, and Z. Said. 2020. Original article a systematic parametric thermal analysis of nano fl uid-based parabolic trough solar collectors. Sustainable Energy Technologies and Assessments 39 (April):100714. doi:10.1016/j.seta.2020.100714.
  • Chavez Panduro, E. A., F. Finotti, G. Largiller, and K. Y. Lervåg. 2022. A review of the use of nanofluids as heat-transfer fluids in parabolic-trough collectors. Applied Thermal Engineering 211 (March):118346. doi:10.1016/j.applthermaleng.2022.118346.
  • Cho, Y. 1998. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particle. (April):2014. doi:10.1080/08916159808946559.
  • Choi, S. U. S. 1995. Enhancing thermal conductivity of fluids with nanoparticles. FED - American Society of Mechanical Engineers Fluids Engineering Division Newsletter 231 (January):99–105.
  • Eldin, S. M., T. Fahim, S. Laouedj, A. Abderrahmane, and Z. Driss. 2023. Numerical study of perforated obstacles effects on the performance of solar parabolic trough collector. no. (January). doi:10.3389/fchem.2022.1089080.
  • Ghasemi, S. E., and A. A. Ranjbar. 2017. Science Direct effect of using nanofluids on efficiency of parabolic trough collectors in solar thermal electric power plants. International Journal of Hydrogen Energy 42:1–9. doi:10.1016/j.ijhydene.2017.07.087.
  • Ghodbane, M., D. Benmenine, A. Khechekhouche, and B. Boumeddane. 2020. Brief on solar concentrators: Differences and applications. Instrumentation Mesure Métrologie 19 (5):371–78. doi:10.18280/i2m.190507.
  • Haghghi, M. A., Z. Mohammadi, S. M. Pesteei, A. Chitsaz, and K. Parham. 2020. Exergoeconomic evaluation of a system driven by parabolic trough solar collectors for combined cooling, heating, and power generation; a case study. Energy 192:116594. doi:10.1016/j.energy.2019.116594.
  • Hassan, M. I., L. Habib, and Y. Shatilla. 2021. Science direct advanced modeling of nanofluid-based solar receivers in the concentrated solar power trough to enhance the heat absorptivity. Energy Reports 7 (May):901–20. doi:10.1016/j.egyr.2021.07.051.
  • Hong, K., Y. Yang, S. Rashidi, Y. Guan, and Q. Xiong. 2020. Numerical simulations of a Cu–water nanofluid-based parabolic-trough solar collector. Journal of Thermal Analysis and Calorimetry 143 (6):4183–95. doi:10.1007/s10973-020-09386-4.
  • Ikhlef, K., and S. Larbi. 2020. Techno-economic optimization for implantation of parabolic trough power plant: Case study of Algeria techno-economic optimization for implantation of parabolic trough power plant: Case study of Algeria. Journal of Renewable and Sustainable Energy 063704 (6):063704. doi:10.1063/5.0013699.
  • Index @ Nrel.Gov. [Online]. https://www.nrel.gov/
  • Kasaeian, A., S. Daviran, R. Azarian, and A. Rashidi. 2015. Performance evaluation and nanofluid using capability study of a solar parabolic trough collector. Energy Conversion and Management 89:368–75. doi:10.1016/j.enconman.2014.09.056.
  • Khanafer, K., and K. Vafai. 2011. International journal of heat and mass transfer a critical synthesis of thermophysical characteristics of nanofluids. International Journal of Heat and Mass Transfer 54 (19–20):4410–28. doi:10.1016/j.ijheatmasstransfer.2011.04.048.
  • Liu, M., N. H. Steven Tay, S. Bell, M. Belusko, R. Jacob, G. Will, W. Saman, and F. Bruno. 2016. Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies. Renewable and Sustainable Energy Reviews 53:1411–32. doi:10.1016/j.rser.2015.09.026.
  • Martínez-Merino, P., S. D Midgley, E. I Martín, P. Estelle, A. Rodrigo, A. Sanchez-Coronilla, R. Grau-Crespo, and J. Navas. 2020. Novel WS2 Based Nanofluids for Concentrating Solar Power: Performance Characterization and Molecular-Level Insights. American Chemical Society 12: 5793−5804. doi:10.1021/acsami.9b18868.
  • Masero, E., J. M. Maestre, and E. F. Camacho. 2022. Market-based clustering of model predictive controllers for maximizing collected energy by parabolic-trough solar collector fields. Applied Energy 306 (PA):117936. doi:10.1016/j.apenergy.2021.117936.
  • Mihoub, S., A. Chermiti, and H. Beltagy. 2017. Methodology of determining the optimum performances of future concentrating solar thermal power plants in Algeria. Energy 122:801–10. doi:10.1016/j.energy.2016.12.056.
  • Moore, R. L. 2010. Implementation of DOWTHERM a Properties into RELAP5- 3D/ATHENA. Idaho: Idaho National Laboratory Idaho Falls.
  • Mukherjee, S., S. Ebrahim, P. C. Mishra, N. Ali, and P. Chaudhuri. 2022. A review on pool and flow boiling enhancement using nanofluids: Nuclear reactor application. Processes 10 (1):177. doi:10.3390/pr10010177.
  • Mustafa, J., S. Alqaed, and M. Sharifpur. 2022. Numerical study on performance of double-fluid parabolic trough solar collector occupied with hybrid non-Newtonian nanofluids: Investigation of effects of helical absorber tube usi … engineering analysis with boundary elements numerical study on perfor. Engineering Analysis with Boundary Elements 140 (July):562–80. doi:10.1016/j.enganabound.2022.04.033.
  • Mwesigye, A. and J. P. Meyer. SC. 2017, doi: 10.1016/j.renene.2017.10.047.
  • Mwesigye, A., and İ. H. Yılmaz. 2020. Thermal and thermodynamic benchmarking of liquid heat transfer fluids in a high concentration ratio parabolic trough solar collector system. Journal of Molecular Liquids 319:114151. doi:10.1016/j.molliq.2020.114151.
  • Nassef, A. M., E. T. Sayed, H. Rezk, M. Ali, C. Rodriguez, and A. G. Olabi. 2018. Fuzzy-modeling with particle swarm optimization for enhancing the production of biodiesel from microalga energy sources, part a: recovery, utilization, and fuzzy-modeling with particle swarm optimization for enhancing the production of biodiesel from. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41:1–10. doi:10.1080/15567036.2018.1549171.
  • Nithiyanantham, U., L. González-Fernández, Y. Grosu, A. Zaki, J. M. Igartua, and A. Faik. 2020. Shape effect of Al 2 O 3 nanoparticles on the thermophysical properties and viscosity of molten salt nanofluids for TES application at CSP plants. Applied Thermal Engineering 169 (January):114942. doi:10.1016/j.applthermaleng.2020.114942.
  • Pargami, H. N., S. D. Siadat, V. Amiri, and M. Sheikhpour. 2022. Antibiotic delivery evaluation against Mycobacterium fortuitum using nanofluids containing carbon nanotubes. BMC Microbiology 22 (1):1–6. doi:10.1186/s12866-022-02523-z.
  • Qin, C., J. B. Kim, and B. J. Lee. 2019. Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nano fl uids. Renewable Energy 143:24–33. doi:10.1016/j.renene.2019.04.146.
  • Ranjan, A., H. Kumar, L. Nagdeve, A. Mishra, K. Gaurav, and J. J. Klemeš. 2022. Environmental effects mechanical properties of rice husk ash, an environmental pollutant, based composites: A step towards sustainable hybrid composites. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44 (4):9584–602. doi:10.1080/15567036.2022.2130476.
  • Rezapour, S., M. Jahangiri, A. G. Shahrezaie, A. Goli, R. Y. Farsani, K. Almutairi, H. X. Ao, S. J. Hosseini Dehshiri, S. S. Hosseini Dehshiri, A. Mostafaeipour, et al. 2022. Dynamic simulation and ranking of using residential-scale solar water heater in Iran. Journal of Environmental Engineering and Landscape Management 30 (1):30–42. doi:10.3846/jeelm.2022.15483.
  • Richa, R., N. C. Shahi, U. C. Lohani, A. Kothakota, R. Pandiselvam, N. Sagarika, A. Singh, P. K. Omre, and A. Kumar. 2022. Design and development of resistance heating apparatus-cum-solar drying system for enhancing fish drying rate. Journal of Food Process Engineering 45 (6). doi:10.1111/jfpe.13839.
  • Sadeghi, S., and I. B. Askari. 2022. Parametric thermodynamic analysis and economic assessment of a novel solar heliostat-molten carbonate fuel cell system for electricity and fresh water production. Environmental Science and Pollution Research 29 (4):5469–95. doi:10.1007/s11356-021-16035-2.
  • Said, Z., M. Ghodbane, B. Boumeddane, A. K. Tiwari, L. S. Sundar, C. Li, N. Aslfattahi, and E. Bellos. 2021. Solar energy materials and solar cells energy, exergy, economic and environmental (4E) analysis of a parabolic trough solar collector using MXene based silicone oil nanofluids pressure loss Pa. Solar Energy Materials and Solar Cells. 239 (October) 2022:111633. doi:10.1016/j.solmat.2022.111633.
  • Santos, R., A. S. Moita, A. P. C. Ribeiro, and A. L. N. Moreira. 2022. The impact of alumina nanofluids on pool boiling performance on biphilic surfaces for cooling applications. Energies 15 (1):372. doi:10.3390/en15010372.
  • Serradj, D. E. B., A. B. S. S. O. Fadlallah, and S. O. Fadlallah. 2022. Design and performance analysis of a parabolic trough power plant under the climatological conditions of Tamanrasset, Algeria. International Journal of Environmental Science and Technology 19 (4):3359–76. doi:10.1007/s13762-021-03350-x.
  • Shaker, B., M. Gholinia, M. Pourfallah, and D. D. Ganji. 2022. CFD analysis of Al2O3-syltherm oil nanofluid on parabolic trough solar collector with a new flange-shaped turbulator model. Theoretical and Applied Mechanics Letters 12 (2):100323. doi:10.1016/j.taml.2022.100323.
  • Sharma, A., S. Thakur, and P. Dhiman. 2022. An integrated active-passive solution for strengthening the functionality of a energy sources, part a: recovery, utilization, and an integrated active-passive solution for strengthening the functionality of a solar air heater Amitesh Sharma, Sushant. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 45 (1):1–17. doi:10.1080/15567036.2022.2161675.
  • Siavashi, M., M. V. Bozorg, and M. H. Toosi. 2021. A numerical analysis of the effects of nanofluid and porous media utilization on the performance of parabolic trough solar collectors. Sustainable Energy Technologies and Assessments 45 (March):101179. doi:10.1016/j.seta.2021.101179.
  • Subhedar, D. G., K. V. Chauhan, K. Patel, and B. M. Ramani. 2020. Materials today: Proceedings performance improvement of a conventional single slope single basin passive solar still by integrating with nanofluid-based parabolic trough collector: An experimental study. Materials Today: Proceedings 26 (xxxx):2–5. doi:10.1016/j.matpr.2020.02.304.
  • Upadhyay, B. H., A. J. Patel, and P. V. Ramana. 2022. A detailed review on solar parabolic trough collector. International Journal of Ambient Energy 43 (1):176–96. doi:10.1080/01430750.2019.1636869.
  • Wang, C., Y. Hu, and Y. He. 2020. Optical, thermal, and structural performance analyses of a parabolic-trough solar collector. Journal of Renewable and Sustainable Energy 12 (5):053704. doi:10.1063/5.0012611.
  • Xu, G., W. Chen, S. Deng, X. Zhang, and S. Zhao. 2015. Performance evaluation of a nanofluid-based direct absorption solar collector with parabolic trough concentrator. Nanomaterials 5 (4):2131–47. doi:10.3390/nano5042131.
  • Yan, S., A. Golzar, M. Sharifpur, J. P. Meyer, D. Liu, and M. Afrand. 2020. International journal of mechanical sciences effect of U-shaped absorber tube on thermal-hydraulic performance and efficiency of two-fluid parabolic solar collector containing two-phase hybrid non-Newtonian nanofluids. International Journal of Mechanical Sciences 185 (May):105832. doi:10.1016/j.ijmecsci.2020.105832.
  • Zhao, X., S. Yan, N. Zhang, N. Zhao, and H. Gao. 2022. Solar flux measuring and optical efficiency forecasting of the linear fresnel reflector concentrator after dustaccumulation. Journal of Thermal Science 31 (3):663–77. doi:10.1007/s11630-022-1596-7.
  • Zhar, R., A. Allouhi, M. Ghodbane, A. Jamil, and K. Lahrech. 2021. Parametric analysis and multi-objective optimization of a combined organic rankine cycle and vapor compression cycle. Sustainable Energy Technologies and Assessments 47 (June):101401. doi:10.1016/j.seta.2021.101401.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.