75
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comparative study on pollutant emission characteristics of rural solid waste and its typical components during different combustion processes

, , ORCID Icon & ORCID Icon
Pages 5255-5266 | Received 05 Dec 2022, Accepted 12 Apr 2023, Published online: 03 May 2023

References

  • Carrasco, F., N. Bredin, and M. Heitz. 2002. Gaseous contaminant emissions as affected by burning scrap tires in cement manufacturing. Journal of Environmental Quality 31 (5):1484–90. doi:10.2134/jeq2002.1484.
  • Cheng, Z., M. Li, J. Li, F. Lin, W. Ma, B. Yan, and G. Chen. 2021. Transformation of nitrogen, sulfur and chlorine during waste tire pyrolysis. Journal of Analytical and Applied Pyrolysis 153. doi:10.1016/j.jaap.2020.104987.
  • Dai, M., Z. Yu, Y. Tang, and X. Ma. 2020. Hcl emission and capture characteristics during PVC and food waste combustion in CO2/O2 atmosphere. Journal of the Energy Institute 93 (3):1036–44. doi:10.1016/j.joei.2019.09.004.
  • Deng, L., X. Jin, Y. Zhang, and D. Che. 2016. Release of nitrogen oxides during combustion of model coals. Fuel 175:217–24. doi:10.1016/j.fuel.2016.02.047.
  • Han, Z., Y. Fei, D. Liu, Z. Dan, Y. Zhang, G. Shi, J. Wang, and Y. Xie. 2017. Yield and physical characteristics analysis of domestic waste in rural areas of China and its disposal proposal. Transactions of the Chinese Society of Agricultural Engineering 33 (15):1–14.
  • Ingo, G. M., C. Riccucci, G. Bultrini, and G. Chiozzini. 2001. Correlation between the surface acid-base nature of solid metal oxides and temperature of CaSO4 Decomposition. Journal of Thermal Analysis and Calorimetry 66 (1):27–35. doi:10.1023/A:1012467027587.
  • Kosajan, V., Z. Wen, F. Fei, C. Doh Dinga, Z. Wang, and J. Zhan. 2020. The feasibility analysis of cement kiln as an MSW treatment infrastructure: From a life cycle environmental impact perspective. Journal of Cleaner Production 267. doi:10.1016/j.jclepro.2020.122113.
  • Kraszkiewicz, A., A. Przywara, and S. Parafiniuk. 2022. Emission of nitric oxide during the combustion of various forms of solid biofuels in a low-power heating device. Energies 15 (16). doi:10.3390/en15165960.
  • Lei, M., J. Hai, J. Cheng, L. Gui, J. Lu, M. Z. Ren, F. Zhu, and Z. H. Yang. 2017. Emission characteristics of toxic pollutants from an updraft fixed bed gasifier for disposing rural domestic solid waste. Environmental Science and Pollution Research 24 (24):19807–15. doi:10.1007/s11356-017-9615-z.
  • Li, P. -W., and C. -S. Chyang. 2020. A comprehensive study on NOx emission and fuel nitrogen conversion of solid biomass in bubbling fluidized beds under staged combustion. Journal of the Energy Institute 93 (1):324–34. doi:10.1016/j.joei.2019.02.007.
  • Li, Y., X. Li, H. Wang, T. Yang, and R. Li. 2019. Gas phase migration of Cl during thermal conversion of municipal solid waste, Energy Sources, Part A: Recovery. Utilization, and Environmental Effects 42 (2):153–60. doi:10.1080/15567036.2019.1587062.
  • Liu, X., Z. Luo, and C. Yu. 2019. Conversion of char-N into NOx and N2O during combustion of biomass char. Fuel 242:389–97. doi:10.1016/j.fuel.2019.01.061.
  • Liu, S., J. Yu, K. Bikane, T. Chen, C. Ma, B. Wang, and L. Sun. 2018. Rubber pyrolysis: Kinetic modeling and vulcanization effects. Energy 155:215–25. doi:10.1016/j.energy.2018.04.146.
  • Liu, H., X. Zhang, and Q. Hong. 2021. Emission Characteristics of Pollution Gases from the Combustion of Food Waste. Energies 14 (19). doi:10.3390/en14196439.
  • Li, S., T. Xu, P. Sun, Q. Zhou, H. Tan, and S. Hui. 2008. NOx and SOx emissions of a high sulfur self-retention coal during air-staged combustion. Fuel 87 (6):723–31. doi:10.1016/j.fuel.2007.05.043.
  • Mentes, D., C. E. Toth, G. Nagy, G. Muranszky, and C. Poliska. 2022. Investigation of gaseous and solid pollutants emitted from waste tire combustion at different temperatures. Waste Manag 149:302–12. doi:10.1016/j.wasman.2022.06.027.
  • Nandhini, R., D. Berslin, B. Sivaprakash, N. Rajamohan, and D. N. Vo. 2022. Thermochemical conversion of municipal solid waste into energy and hydrogen: A review. Environmental Chemistry Letters 20 (3):1645–69. doi:10.1007/s10311-022-01410-3.
  • Nelson, H. F. 1976. Nitric oxide formation in combustion. AIAA Journal 14 (9):1177–82. doi:10.2514/3.7210.
  • Ozgen, S., S. Cernuschi, and S. Caserini. 2021. An overview of nitrogen oxides emissions from biomass combustion for domestic heat production. Renewable and Sustainable Energy Reviews 135. doi:10.1016/j.rser.2020.110113.
  • Pan, D., H. Chen, G. Zhou, and F. Kong. 2020. Determinants of public-private partnership adoption in solid waste management in Rural China. International Journal of Environmental Research and Public Health 17 (15):5350. doi:10.3390/ijerph17155350.
  • Peydayesh, M., M. Bagnani, W. L. Soon, and R. Mezzenga. 2022. Turning food protein waste into sustainable technologies. Chemical Reviews 123 (5):2112–54. doi:10.1021/acs.chemrev.2c00236.
  • Phong-Anant, L. J. W. D., T. F. Wall, and T. F. Wall. 1985. Nitrogen oxide formation from Australian coals. Combustion and Flame 62 (1):21–30. doi:10.1016/0010-2180(85)90090-2.
  • Rokni, E., X. Ren, A. Panahi, and Y. A. Levendis. 2018. Emissions of SO2, NOx, CO2, and HCl from Co-firing of coals with raw and torrefied biomass fuels. Fuel 211:363–74. doi:10.1016/j.fuel.2017.09.049.
  • Schmidt, D., C. Yildiz, J. Ströhle, and B. Epple. 2021. Release of nitrogen, sulfur and chlorine species from coal in carbon dioxide atmosphere. Fuel 284. doi:10.1016/j.fuel.2020.119279.
  • Silva, R. B., R. Fragoso, C. Sanches, M. Costa, and S. Martins-Dias. 2014. Which chlorine ions are currently being quantified as total chlorine on solid alternative fuels? Fuel Processing Technology 128:61–67. doi:10.1016/j.fuproc.2014.07.003.
  • Sipra, A. T., N. Gao, and H. Sarwar. 2018. Municipal solid waste (MSW) pyrolysis for bio-fuel production: A review of effects of MSW components and catalysts. Fuel Processing Technology 175:131–47. doi:10.1016/j.fuproc.2018.02.012.
  • Sun, Y., Z. Qin, Y. Tang, T. Huang, S. Ding, and X. Ma. 2021. Techno-environmental-economic evaluation on municipal solid waste (MSW) to power/fuel by gasification-based and incineration-based routes. Journal of Environmental Chemical Engineering 9 (5). doi:10.1016/j.jece.2021.106108.
  • TAKAGI, T., T. TATSUMI, and M. OGASAWARA. 1979. Nitric Oxide Formation from Fuel Nitrogen in Staged. Combustion and Flame 35:17–25. doi:10.1016/0010-2180(79)90003-8.
  • Tang, J., Y. Tang, Z. Sun, M. Lei, and X. Ma. 2023. Quantify the food delivery package waste generation of Dongguan in grid level using empowerment calculation method, energy sources, part a: recovery. Utilization, and Environmental Effects 45 (1):940–51. doi:10.1080/15567036.2023.2175936.
  • Thomas, K. M. 1997. The release of nitrogen oxides during char combustion. Fuel 76 (6):457–73. doi:10.1016/S0016-2361(97)00008-2.
  • Tsukahara, H., T. Ishida, and M. Mayumi. 1999. Gas-phase oxidation of nitric oxide chemical kinetics. Nitric Oxide: Biology and Chemistry / Official Journal of the Nitric Oxide Society 3 (3):191–98. doi:10.1006/niox.1999.0232.
  • Wang, F., Z. Cheng, A. Reisner, and Y. Liu. 2018. Compliance with household solid waste management in rural villages in developing countries. Journal of Cleaner Production 202:293–98. doi:10.1016/j.jclepro.2018.08.135.
  • Wang, Y., Y. Liao, Y. Chen, Y. Bin, and X. Ma. 2022. Co-combustion of coal and composite board sawdust: Combustion behaviors, ash slagging characteristics, and gaseous pollutant emissions and control. Biomass Conversion and Biorefinery. doi:10.1007/s13399-022-03481-2.
  • Wang, H., G. Liu, Y. Z. Boon, A. Veksha, A. Giannis, T. T. Lim, and G. Lisak. 2021. Dual-functional witherite in improving chemical looping performance of iron ore and simultaneous adsorption of HCl in syngas at high temperature. Chemical Engineering Journal 413. doi:10.1016/j.cej.2020.127538.
  • Xiaohe, X., L. Zhaomin, Y. Shilin, T. Houzhang, X. Baixiang, and H. Jun. 2021. Coke preheating combustion study on NOx and SO2 emission. Journal of the Energy Institute 97:131–37. doi:10.1016/j.joei.2021.04.007.
  • Xinjie, L., Z. Shihong, W. Xincheng, S. Jinai, Z. Xiong, W. Xianhua, Y. Haiping, and C. Hanping. 2021. Co-combustion of wheat straw and camphor wood with coal slime: Thermal behaviour, kinetics, and gaseous pollutant emission characteristics. Energy 234. doi:10.1016/j.energy.2021.121292.
  • Xu, H., L. Li, W. Tang, Z. Sun, Y. Chen, G. Sun, Q. Gu, and L. Duan. 2023. Experimental study on the combustion behavior and NOx emission during the co-combustion of combustible industrial solid wastes. Journal of the Energy Institute 106. doi:10.1016/j.joei.2022.11.010.
  • Yue, S., C. Wang, Z. Xu, T. Si, C. Zou, and E. J. Anthony. 2020. Formation and reduction of NO2 in fixed bed combustion of coal char under oxy–fuel conditions: experimental and density functional theory analysis. Energy & Fuels 34 (5):6326–37. doi:10.1021/acs.energyfuels.0c00244.
  • Zhang, G., Q. Feng, J. Hu, G. Sun, F. Evrendilek, H. Liu, and J. Liu. 2022. Performance and mechanism of bamboo residues pyrolysis: Gas emissions, by-products, and reaction kinetics. The Science of the Total Environment 838 (Pt 4):156560. doi:10.1016/j.scitotenv.2022.156560.
  • Zhang, S., X. Jiang, G. Lv, B. Liu, Y. Jin, J. Yan, H. F. SO2 NOx, Hcl and PCDD/Fs emissions during Co-combustion of bituminous coal and pickling sludge in a drop tube furnace, Fuel 186 (2016) 91–99.
  • Zhao, R., R. Dai, T. Chen, J. Qin, J. Zhang, and J. Wu. 2021. Investigation on combustion, gaseous pollutants emission and ash characteristics during co-combustion of semicoke and coal slime. Journal of Environmental Chemical Engineering 9 (5). doi:10.1016/j.jece.2021.106249.
  • Zhao, Z., W. Li, J. Qiu, X. Wang, and B. Li. 2006. Influence of Na and Ca on the emission of NOx during coal combustion. Fuel 85 (5–6):601–06. doi:10.1016/j.fuel.2005.09.001.
  • Zou, Y., D. Pau, Y. Li, Y. Zhang, and K. Li. 2022. Oxygen effects on the evolution of hydrogen chloride and chlorine gas during combustion of PVC-CaCO3 based cable. Fuel 329. doi:10.1016/j.fuel.2022.125469.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.