105
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of coal type on the physical properties and CO2 adsorption performance of activated coke prepared by a single-step method

, , , , , , & show all
Pages 5281-5296 | Received 15 Nov 2022, Accepted 11 Feb 2023, Published online: 03 May 2023

References

  • Abuelnoor, N., A. AlHajaj, and M. Khaleel. 2021. Activated carbons from biomass-based sources for CO2 capture applications. Chemosphere 282:131111. doi:10.1016/j.chemosphere.2021.131111.
  • An, D. H., X. X. Cheng, and B. X. Zhou. 2019. Explore the adsorption and regeneration properties of Zhundong powder coke on mercury. Journal of China Coal Society 44 (6):1891–98.
  • Bi, Y. &., and Y. L Ju. 2021. Design and analysis of CO2 cryogenic separation process for the new LNG purification cold box. In International Journal of Refrigeration, Vol. 130, 67–75.
  • Cherik, D., and K. Louhab. 2017. Preparation of microporous activated carbon from date stones by chemical activation using zinc chloride. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (18):1935–41. doi:10.1080/15567036.2017.1390012.
  • Ding, S., and Y. Liu. 2020. Adsorption of CO2 from flue gas by novel seaweed-based KOH activated porous biochars. Fuel 260:116382. doi:10.1016/j.fuel.2019.116382.
  • Fu, J. P., B. X. Zhou, and Z. Zhang. 2020. One-step rapid pyrolysis activation method to prepare nanostructured activated coke powder. Fuel 262:116514. doi:10.1016/j.fuel.2019.116514.
  • Ge, L. C., C. Zhao, and S. M. Chen. 2022. An analysis of the carbonization process and volatile-release characteristics of coal-based activated carbon. Energy 257:124779. doi:10.1016/j.energy.2022.124779.
  • Guo, Y. F., C. Tan, J. Sun, W. Li, J. Zhang, and C. Zhao. 2020. Porous activated carbons derived from waste sugarcane bagasse for CO2 adsorption. Chemical Engineering Journal 381:122736. doi:10.1016/j.cej.2019.122736.
  • Huang, X., W. Chu, W. J. Sun, C. Jiang, Y. Feng, and Y. Xue. 2014. Investigation of oxygen-containing group promotion effect on CO2–coal interaction by density functional theory. Applied Surface Science 299 (0):l62–9. doi:10.1016/j.apsusc.2014.01.205.
  • Jang, E., W. S. Choi, and K. B. Lee. 2019. Effect of carbonization temperature on the physical properties and CO2 adsorption behavior of petroleum coke-derived porous carbon. Fuel 248:85–92. doi:10.1016/j.fuel.2019.03.051.
  • Keshavarz, L., M. Rezaghaani, J. M. MacElroy, and N. J. English. 2021. A comprehensive review on the application of aerogels in CO2-adsorption: Materials and characterisation. Chemical Engineering Journal 412:128604. doi:10.1016/j.cej.2021.128604.
  • Kim, S., Y. Ko, G. J. Lee, and J. W. Lee. 2023. Sustainable energy harvesting from post-combustion CO2 capture using amine-functionalized solvents. Energy 267:126532. doi:10.1016/j.energy.2022.126532.
  • Li, M., and R. Xiao. 2019. Preparation of a dual pore structure activated carbon from rice husk char as an adsorbent for CO2 capture. Fuel Processing Technology 186:35–39. doi:10.1016/j.fuproc.2018.12.015.
  • Malekli, M., and A. Aslani. 2022. A novel post-combustion CO2 capture design integrated with an Organic Rankine Cycle (ORC). Process Safety and Environmental Protection 168:942–52. doi:10.1016/j.psep.2022.10.076.
  • Plaza, M. G., A. S. Gonz´alez, J. J. Pis, F. Rubiera, and C. Pevida. 2014. Production of microporous biochars by single-step oxidation: Effect of activation conditions on CO2 capture. Applied Energy 114:551–62. doi:10.1016/j.apenergy.2013.09.058.
  • Rashidi, N. A., and S. Yusup. 2017. Potential of palm kernel shell as activated carbon precursors through single stage activation technique for carbon dioxide adsorption. Journal of Cleaner Production 168:474–86. doi:10.1016/j.jclepro.2017.09.045.
  • Serafin, J., K. Kiełbasa, and B. Michalkiewicz. 2022. The new tailored nanoporous carbons from the common polypody (Polypodium vulgare): The role of textural properties for enhanced CO2 adsorption. Chemical Engineering Journal 429:131751. doi:10.1016/j.cej.2021.131751.
  • Sun, F., J. H. Gao, X. F. Tang, X. Tang, and S. Wu. 2015. A systematic investigation of SO2 removal dynamics by coal-based activated cokes: The synergic enhancement effect of hierarchical pore configuration and gas components. Applied Surface Science 357:1895–901. doi:10.1016/j.apsusc.2015.09.118.
  • Tian, H. Y., J. Pan, and D. Q. Zhu. 2021. Innovative one-step preparation of activated carbon from low-rank coals activated with oxidized pellets. Journal of Cleaner Production 313:127877. doi:10.1016/j.jclepro.2021.127877.
  • Wang, T., B. X. Zhou, C. Li, T. Xu, J. Fu, C. Ma, and Z. Song. 2021. Preparation of powdered activated coke for SO2 removal using different coals through a one-step method under high-temperature flue gas atmosphere. Journal of Analytical and Applied Pyrolysis 153:104989. doi:10.1016/j.jaap.2020.104989.
  • Yan, M., Y. Z. Li, G. F. Chen, L. Q. Zhang, Y. Mao, and C. Ma. 2017. A novel flue gas pre-treatment system of post-combustion CO2 capture in coal-fired power plant. Chemical Engineering Research & Design 128:331–41. doi:10.1016/j.cherd.2017.10.005.
  • You, Y. Y., and X. J. Liu. 2019. Modeling of CO2 adsorption and recovery from wet flue gas by using activated carbon. Chemical Engineering Journal 369:672–85. doi:10.1016/j.cej.2019.03.118.
  • Zhang, M. M., R. Semiat, and X. Z. He. 2022. Recent advances in Poly(ionic liquids) membranes for CO2 separation. Separation and PurificationTechnology 299:12178. doi:10.1016/j.seppur.2022.121784.
  • Zhang, Z., T. Wang, K. Liu, X. Zhao, and C. Ma. 2016. Powder-activated semicokes prepared from coal fast pyrolysis: Influence of oxygen and steam atmosphere on pore structure. Energy & Fuels: An American Chemical Society Journal 30:896–903. doi:10.1021/acs.energyfuels.5b02488.
  • Zhou, B. X., T. Wang, C. Li, J. Fu, Z. Zhang, Z. Song, and C. Ma. 2020. Multi-objective optimization of the preparation parameters of the powdered activated coke for SO2 adsorption using response surface methodology. Journal of Analytical and Applied Pyrolysis 146:104776. doi:10.1016/j.jaap.2020.104776.
  • Zhou, B. X., T. Wang, and T. M. Xu. 2021. Comparative study on the preparation of powdered activated coke for SO2 adsorption: One-step and two-step rapid activation methods. Fuel 288:119570. doi:10.1016/j.fuel.2020.119570.
  • Zhou, L. 2018. Prediction of CO2 adsorption on different activated carbons by hybrid group method of data-handling networks and LSSVM. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41 (16):1960–71. doi:10.1080/15567036.2018.1548521.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.