77
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental performance evaluation of tracking photovoltaic system based on variable water flow rate with surface temperature

ORCID Icon & ORCID Icon
Pages 5297-5309 | Received 02 Mar 2023, Accepted 27 Apr 2023, Published online: 03 May 2023

References

  • Ahmadi, R., F. Monadinia, and M. Maleki. 2021. Passive/Active photovoltaic-thermal (PVT) system implementing infiltrated phase change material (PCM) in PS-CNT foam. Solar Energy Materials and Solar Cells 222 (December 2020):110942. doi:10.1016/j.solmat.2020.110942.
  • Al-Amri, F., T. S. Maatallah, O. F. Al-Amri, S. Ali, S. Ali, I. S. Ateeq, R. Zachariah, and T. S. Kayed. 2022. Innovative technique for achieving uniform temperatures across solar panels using heat pipes and liquid immersion cooling in the harsh climate in the Kingdom of Saudi Arabia. Alexandria Engineering Journal 61 (2):1413–24. doi:10.1016/j.aej.2021.06.046.
  • Al-Odat, M. Q. 2022. Experimental study of temperature influence on the performance of PV/T cell under Jordan climate conditions. Journal of Ecological Engineering 23 (10):80–88. doi:10.12911/22998993/152283.
  • Arefin, M. A. 2019. Analysis of an integrated photovoltaic thermal system by top surface natural circulation of water. Frontiers in Energy Research 7. doi:10.3389/fenrg.2019.00097.
  • Du, B., E. Hu, and M. Kolhe. 2012. Performance analysis of water cooled concentrated photovoltaic (CPV) system. Renewable and Sustainable Energy Reviews 16 (9):6732–36. doi:10.1016/j.rser.2012.09.007.
  • Eicker, U., A. Colmenar-Santos, L. Teran, M. Cotrado, and D. Borge-Diez. 2014. Economic evaluation of solar thermal and photovoltaic cooling systems through simulation in different climatic conditions: An analysis in three different cities in Europe. Energy and Buildings 70:207–23. doi:10.1016/j.enbuild.2013.11.061.
  • Florschuetz, L. W.1975. On heat rejection from terrestrial solar cell arrays with sunlight concentration. In Photovoltaic Specialists Conference, Vol. 11, 318–26. New york: Institue of electrical and energy engineering.
  • Florschuetz, L. W. 1979. Extension of the Hottel-Whillier model to the analysis of combined photovoltaic/thermal flat plate collectors. Solar Energy 22 (4):361–66. doi:10.1016/0038-092X(79)90190-7.
  • Fumo, N., V. Bortone, and J. C. Zambrano. 2013. Comparative analysis of solar thermal cooling and solar photovoltaic cooling systems. Journal of Solar Energy Engineering 135 (2). doi:10.1115/1.4007935.
  • Govardhanan, M. S., G. Kumaraguruparan, M. Kameswari, R. Saravanan, M. Vivar, and K. Srithar. 2020. Photovoltaic module with uniform water flow on top surface. International Journal of Photoenergy 2020:1–9. doi:10.1155/2020/8473253.
  • Hassan, A., A. Wahab, M. A. Qasim, M. M. Janjua, M. A. Ali, H. M. Ali, T. R. Jadoon, E. Ali, A. Raza, and N. Javaid. 2020. Thermal management and uniform temperature regulation of photovoltaic modules using hybrid phase change materials-nanofluids system. Renewable Energy 145:282–93. doi:10.1016/j.renene.2019.05.130.
  • Hendrie, S. D., “Evaluation of combined photovoltaic/thermal collectors,” in n: Sun II; Proceedings of the Silver Jubilee Congress, Atlanta Ga., 1979, pp. 1865–69.
  • Hossain, R., A. J. Ahmed, S. M. K. N. Islam, N. Saha, P. Debnath, A. Z. Kouzani, and M. A. P. Mahmud. 2020. New design of solar photovoltaic and thermal hybrid system for performance improvement of solar photovoltaic. International Journal of Photoenergy 2020 (1):1–6. doi:10.1155/2020/8825489.
  • Hussien, A., A. Eltayesh, and H. M. El-Batsh. 2023. Experimental and numerical investigation for PV cooling by forced convection. Alexandria Engineering Journal 64:427–40. doi:10.1016/j.aej.2022.09.006.
  • Jaffar, M. F., A. T. Mohammad, and A. Q. Ahmed. 2022. An experimental study for enhancing the performance of the photovoltaic module using forced air. Journal Technology 4 (2):1–9. [Online]. Available. http://journal.mtu.edu.iq.
  • Krauter, S. 2004. Increased electrical yield via water flow over the front of photovoltaic panels. Solar Energy Materials and Solar Cells 82 (1–2):131–37. doi:10.1016/j.solmat.2004.01.011.
  • Moharram, K. A., M. S. Abd-Elhady, H. A. Kandil, and H. El-Sherif. 2013. Enhancing the performance of photovoltaic panels by water cooling. Ain Shams Engineering Journal 4 (4):869–77. doi:10.1016/j.asej.2013.03.005.
  • Nasrin, R., N. A. Rahim, H. Fayaz, and M. Hasanuzzaman. 2018. Water/MWCNT nanofluid based cooling system of PVT: Experimental and numerical research. Renewable Energy 121:286–300. doi:10.1016/j.renene.2018.01.014.
  • Nateqi, M., M. R. Zargarabadi, and R. Rafee. 2021. Experimental investigations of spray flow rate and angle in enhancing the performance of PV panels by steady and pulsating water spray system. SN Applied Sciences 3 (1):1–13. doi:10.1007/s42452-021-04169-4.
  • Peng, Z., M. Herfatmanesh, Y. Liu. 2018. Cooled solar PV panels for output energy efficiency optimisation. Cooled Solar PV Panels for Output Energy Efficiency Optimisation 150:949–955. doi:10.1016/j.enconman.2017.07.007.
  • Rosli, M. A. M., Nawam MZ, Latif IA, Herawan SG, Noh NM, Saleem SN, Hussain F. 2022. The Effect of variation in mass flow rate and solar irradiance on temperature uniformity and thermal performance of photovoltaic thermal: A simulated CFD study. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences. 91(2):106–19. doi:10.37934/arfmts.91.2.106119.
  • Safitra, A. G., F. H. Sholihah, E. Tridianto, I. Baihaqi, and N. N. A. Indah. 2018. Experimental study of water cooling effect on heat transfer to increase output power of 180 watt peak photovoltaic module. E3S Web of Conferences 67:1–9. doi:10.1051/e3sconf/20186701009.
  • Sattar, M., A. Rahman, N. Ahmed, A. Mohammed, A. Aziz, N. Ullah. 2022. Performance analysis and optimization of a Cooling System for Hybrid Solar Panels Based on Climatic Conditions of Islamabad, Pakistan. MDPI 150:1–22.
  • Shahsavar, A., M. Salmanzadeh, M. Ameri, and P. Talebizadeh. 2011. Energy saving in buildings by using the exhaust and ventilation air for cooling of photovoltaic panels. Energy and Buildings 43 (9):2219–26. doi:10.1016/j.enbuild.2011.05.003.
  • Tan, L., A. Date, G. Fernandes, B. Singh, and S. Ganguly. 2017. Efficiency gains of photovoltaic system using latent heat thermal energy storage. Energy Procedia 110 (December 2016):83–88. doi:10.1016/j.egypro.2017.03.110.
  • Tyagi, V. V., N. A. A. Rahim, N. A. Rahim, and J. A. L. Selvaraj. 2013. Progress in solar PV technology: Research and achievement. Renewable and Sustainable Energy Reviews 20:443–61. doi:10.1016/j.rser.2012.09.028.
  • Wu, S. Y., C. Chen, and L. Xiao. 2018. Heat transfer characteristics and performance evaluation of water-cooled PV/T system with cooling channel above PV panel. Renewable Energy 125:936–46. doi:10.1016/j.renene.2018.03.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.