123
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Study on quantitative structure of coke deposition in UDH catalyst for acetylene hydrochlorination

ORCID Icon, &
Pages 5458-5464 | Received 21 Sep 2022, Accepted 07 Mar 2023, Published online: 04 May 2023

References

  • A, Y. W., N. A. Yao, A. J. Z, W. Li, and Y. Han. 2019. MOMTPPC improved Cu-based heterogeneous catalyst with high efficiency for acetylene hydrochlorination - ScienceDirect. Molecular Catalysis 479:55–65. doi:10.1016/j.mcat.2019.110612.
  • Brown, J. K., and W. R. Ladner. 1960. A study of the hydrogen distribution in coal-like materials by high-resolution nuclear magnetic resonance spectroscopy. II. A comparison with infrared measurement and the conversion to carbon structure. Fuel 39:87.
  • B, W. M., S. Y. Y, L. S. B, N. Guo, Y. -W. Wang, J. -T. Zheng, and J. -S. Qiu. 2013. Synthesis and characterization of condensed poly-nuclear aromatic resin using heavy distillate from ethylene tar. New Carbon Materials 55:377. doi:10.1016/j.carbon.2012.12.058.
  • B, D. X., Z. C. Y, G. Q. X, W. Li, and X. Xu. 2018. Metal-organic framework-derived cobalt and nitrogen co-doped porous carbon with four-coordinated Co-N x for efficient acetylene hydrochlorination. Applied Organometallic Chemistry 32 (12):4570. doi:10.1002/aoc.4570.
  • G, Z. J., Z. J. J, C. X. G, L. Wang, H. Yang, and B. Shen. 2015. An Au–Cu bimetal catalyst for acetylene hydrochlorination with renewable γ-Al2O 3as the support. RSC Advances 5 (22):16727–34. doi:10.1039/C4RA13648A.
  • Q, L. Y., Z. C. M, Z. H. Y, L. Li, J. Zhang, R. Oh, L. Yao, M. Cai, J. Li, M. Zhang, et al. 2021. Effects of N-, P-, or O-containing ligands on gold-based complex catalysts for acetylene hydrochlorination. Applied Catalysis A-General 612:118015. doi:10.1016/j.apcata.2021.118015.
  • Samuel, P., S. R. D, M. Grazia, N. F. Dummer, L. R. Smith, A. Lazaridou, D. J. Morgan, S. J. Freakley, S. A. Kondrat, J. J. Smit, et al. 2022. Lowering the operating temperature of gold acetylene hydrochlorination catalysts using oxidized carbon supports. ACS Catalysis. 12(22):14086–95. doi:10.1021/acscatal.2c04242.
  • Wang, L., Z. J. G, S. B. X, et al. 2018. Enhancement of the stability of Au-Cu/AC acetylene hydrochlorination bimetallic catalyst with melamine treated support. Iranian Institute of Research and Development in Chemical Industries 37 (6):43–58.
  • Wang, B., Z. T. T, L. Y. W, W. Li, H. Zhang, and J. Zhang. 2021. Phosphine-oxide organic ligand improved Cu-based catalyst for acetylene hydrochlorination. Applied Catalysis A-General 630:118461. doi:10.1016/j.apcata.2021.118461.
  • Wang, L., S. B. X, Z. J. G, and X. Bi. 2017. Trimetallic Au-Cu-K for acetylene hydrochlorination. The Canadian Journal of Chemical Engineering 95 (6):1069–75. doi:10.1002/cjce.22754.
  • Y, D. Y., X. X. L, Z. R. B, R. Xie, C. Zhao, Y. Yan, and Q. Niu. 2021. The effect of alkali metals on the Ru/AC catalyst for acetylene hydrochlorination. Catalysis Communications 158:106334. doi:10.1016/j.catcom.2021.106334.
  • Y, Z. H., W. Li, J. Y. H, W. Sheng, M. Hu, X. Wang, and J. Zhang. 2016. Ru-Co (III)-Cu (II)/SAC catalyst for acetylene hydrochlorination. Applied Catalysis B, Environmental 189:56–64. doi:10.1016/j.apcatb.2016.02.030.
  • Y, L. X., P. Li, P. X. L, H. Ma, and X. Bao. 2017. Deactivation mechanism and regeneration of carbon nanocomposite catalyst for acetylene hydrochlorination. Applied Catalysis-B- Environmental 210:116–20. doi:10.1016/j.apcatb.2017.03.046.
  • Zeng, J. J., and J. G. Zhao. 2022. Research progress of gold-based mercury-free catalysts for acetylene hydrochlorination. Chemical Progress 41 (07):3589–96.
  • Z, Z. L., Z. J. G, M. Cong, X. Yuan, H. Sun, J. Liu, H. Ling, and B. Shen. 2022. Study on quantitative structure of oil from oily sludge by improved Brown-Ladner (B-L) method. Petroleum Science and Technology 40 (7):871–78. doi:10.1080/10916466.2021.2019765.
  • Zhao, P. J., F. M. Wang, W. F. Cai, J. L. Zhang, and X. B. Zhang 2014. Reaction mechanism of acetylene hydrochlorination in Cu-based catalyst. Journal of Molecular Catalysis 28 (03):259–267.
  • Zhao, J. J., J. G. Zeng, L. Wang, H. H. Yang, and B. X. Shen. 2016. Structural characterization of coke deposited on single-tube with mercury-free catalyst for acetylene hydrochlorination reaction. Modern Chemical Industry 36 (2):72–76.
  • Z, L. L., L. Wang, Y. H. J, S. Ali, J. Wang, L. Zhao, C. Yang, R. Wu, and L. Ma. 2020. Non-mercury catalytic acetylene hydrochlorination over Bi/CNTs catalysts for vinyl chloride monomer production. Journal of Materials Research and Technology-JmR&T 9 (6):14961–68. doi:10.1016/j.jmrt.2020.10.072.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.