810
Views
6
CrossRef citations to date
0
Altmetric
Review Article

A comprehensive review on techno-environmental analysis of state-of-the-art production and storage of hydrogen energy: challenges and way forward

ORCID Icon, &
Pages 5905-5937 | Received 19 Jan 2023, Accepted 29 Apr 2023, Published online: 14 May 2023

References

  • Abdalla, A. M., S. Hossain, O. B. Nisfindy, A. T. Azad, M. Dawood, and A. K. Azad. 2018. Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Conversion & Management 165:602–27. doi:10.1016/j.enconman.2018.03.088.
  • Abdelkareem, M. A., K. Elsaid, T. Wilberforce, M. Kamil, E. T. Sayed, and A. Olabi. 2021. Environmental aspects of fuel cells: A review. The Science of the Total Environment 752:141803. doi:10.1016/j.scitotenv.2020.141803.
  • Acar, C., and I. Dincer. 2019. Review and evaluation of hydrogen production options for better environment. Journal of Cleaner Production 218:835–49. doi:10.1016/j.jclepro.2019.02.046.
  • Alizadeh, M. I., M. P. Moghaddam, N. Amjady, P. Siano, and M. K. Sheikh-El-Eslami. 2016. Flexibility in future power systems with high renewable penetration: A review. Renewable & Sustainable Energy Reviews 57:1186–93. doi:10.1016/j.rser.2015.12.200.
  • Alves, M. P., W. Gul, C. A. Cimini Junior, and S. K. Ha. 2022. A review on industrial perspectives and challenges on material, manufacturing, design and development of compressed hydrogen storage tanks for the transportation sector. Energies 15:5152. doi:10.3390/en15145152.
  • Alzaharani, A. A., I. Dincer, and G. Naterer. 2013. Performance evaluation of a geothermal based integrated system for power, hydrogen and heat generation. International Journal of Hydrogen Energy 38:14505–11. doi:10.1016/j.ijhydene.2013.09.002.
  • Anderson, A., K. Brindhadevi, S. H. Salmen, T. A. Alahmadi, A. Marouskova, M. Sangeetha, and M. Sekar. 2022. Effects of nanofluids on the photovoltaic thermal system for hydrogen production via electrolysis process. International Journal of Hydrogen Energy 47:37183–91. doi:10.1016/j.ijhydene.2021.12.218.
  • Angeli, S. D., G. Monteleone, A. Giaconia, and A. A. Lemonidou. 2014. State-of-the-art catalysts for CH4 steam reforming at low temperature. International Journal of Hydrogen Energy 39:1979–97. doi:10.1016/j.ijhydene.2013.12.001.
  • Avargani, V. M., S. Zendehboudi, N. M. C. Saady, and M. B. Dusseault. 2022. A comprehensive review on hydrogen production and utilization in North America: Prospects and challenges. Energy Conversion & Management 269:115927. doi:10.1016/j.enconman.2022.115927.
  • Azni, M. A., and R. Md Khalid. 2021. Hydrogen fuel cell legal framework in the United States, Germany, and South Korea—A model for a regulation in Malaysia. Sustainability 13:2214. doi:10.3390/su13042214.
  • Balachandra, P., and B. S. Reddy. 2007. Hydrogen energy for Indian transport sector: A well-to-wheel techno-economic and environmental feasibility analysis. Mumbai, India: Indira Gandhi Institute of Development Research.
  • Balat, M. 2008a. Possible methods for hydrogen production. Energy sources, Part A: Recovery. Utilization, and Environmental Effects 31:39–50. doi:10.1080/15567030701468068.
  • Balat, M. 2008b. Potential importance of hydrogen as a future solution to environmental and transportation problems. International Journal of Hydrogen Energy 33:4013–29. doi:10.1016/j.ijhydene.2008.05.047.
  • Ball, M., and M. Wietschel. 2009a. The future of hydrogen–opportunities and challenges. International Journal of Hydrogen Energy 34:615–27. doi:10.1016/j.ijhydene.2008.11.014.
  • Ball, M., and M. Wietschel. 2009b. The hydrogen economy: Opportunities and challenges.
  • Barbier, F. 2010. Hydrogen distribution infrastructure for an energy system: Present status and perspectives of technologies. Hydrogen and Fuel Cells: Fundamentals, Technologies and Applications 78-1:121–48.
  • Barthelemy, H., M. Weber, and F. Barbier. 2017. Hydrogen storage: Recent improvements and industrial perspectives. International Journal of Hydrogen Energy 42:7254–62. doi:10.1016/j.ijhydene.2016.03.178.
  • Bauer, S., C. Beyer, F. Dethlefsen, P. Dietrich, R. Duttmann, M. Ebert, V. Feeser, U. Gorke, R. Kober, O. Kolditz, et al. 2013. Impacts of the use of the geological subsurface for energy storage: An investigation concept. Environmental Earth Sciences 70:3935–43. doi:10.1007/s12665-013-2883-0.
  • Baykara, S. Z. 2018. Hydrogen: A brief overview on its sources, production and environmental impact. International Journal of Hydrogen Energy 43:10605–14. doi:10.1016/j.ijhydene.2018.02.022.
  • Bhandari, R., and R. R. Shah. 2021. Hydrogen as energy carrier: Techno-economic assessment of decentralized hydrogen production in Germany. Renewable Energy 177:915–31. doi:10.1016/j.renene.2021.05.149.
  • Bicakova, O., and P. Straka. 2012. Production of hydrogen from renewable resources and its effectiveness. International Journal of Hydrogen Energy 37:11563–78. doi:10.1016/j.ijhydene.2012.05.047.
  • Birol, F. 2019. The future of hydrogen: Seizing today’s opportunities. IEA Report prepared for the G, 20.
  • Bochirol, L., J. Doulat, A. Lacaze, and L. Weil. 1963. A liquid-hydrogen reactor irradiation device. Advances in Cryogenic Engineering: Proceedings of the 1963 Cryogenic Engineering Conference University of Colorado College of Engineering and National Bureau of Standards Boulder Laboratories, Boulder, Colorado, August 19–21. 1964. Springer, 552–56.
  • Bocklisch, T. 2016. Hybrid energy storage approach for renewable energy applications. Journal of Energy Storage 8:311–19. doi:10.1016/j.est.2016.01.004.
  • Bolt, A., I. Dincer, and M. Agelin-Chaab. 2020. Energy and exergy analyses of hydrogen production process with aluminum and water chemical reaction. Energy 205:117978. doi:10.1016/j.energy.2020.117978.
  • Boryaev, A., I. Chernyaev, and Y. Zhu. 2022. The use of liquid, slush, gel and solid hydrogen in fuel systems of transport equipment. Proceedings of ARCTD 2021: Arctic Territorial Development, St. Petersburg, Russia, Springer.
  • Bourgeois, T., F. Ammouri, D. Baraldi, and P. Moretto. 2018. The temperature evolution in compressed gas filling processes: A review. International Journal of Hydrogen Energy 43:2268–92. doi:10.1016/j.ijhydene.2017.11.068.
  • Brewer, G. D. 2017. Hydrogen aircraft technology. New York: Routledge.
  • Brewer, G., and R. Morris. 1975. Minimum energy, liquid hydrogen supersonic cruise vehicle study.
  • Burstall, A. 1927. Experiments on the behaviour of various fuels in a high-speed internal combustion engine. Proceedings of the Institution of Automobile Engineers, 22, 358–92.
  • Caglayan, D. G., N. Weber, H. U. Heinrichs, J. Linben, M. Robinius, P. A. Kukla, and D. Stolten. 2020. Technical potential of salt caverns for hydrogen storage in Europe. International Journal of Hydrogen Energy 45:6793–805. doi:10.1016/j.ijhydene.2019.12.161.
  • Carmo, M., D. L. Fritz, J. Mergel, and D. Stolten. 2013. A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy 38:4901–34. doi:10.1016/j.ijhydene.2013.01.151.
  • Chawdhury, P., D. Ray, T. Vinodhkumar, and C. Subrahmanyam. 2019. Catalytic DBD plasma approach for methane partial oxidation to methanol under ambient conditions. Catalysis Today 337:117–25. doi:10.1016/j.cattod.2019.03.032.
  • Chen, M., S. -F. Chou, F. Blaabjerg, and P. Davari. 2022. Overview of power electronic converter topologies enabling large-scale hydrogen production via water electrolysis. Applied Sciences 12:1906. doi:10.3390/app12041906.
  • Chen, Z., K. O. Kirlikovali, K. B. Idrees, M. C. Wasson, and O. K. Farha. 2022. Porous materials for hydrogen storage. Chem 8:693–716. doi:10.1016/j.chempr.2022.01.012.
  • Cho, Y. S., and J. H. Kim. 2011. Hydrogen production by splitting water on solid acid materials by thermal dissociation. International Journal of Hydrogen Energy 36:8192–202. doi:10.1016/j.ijhydene.2011.04.133.
  • Cortazar, M., N. Gao, C. Quan, M. A. Suarez, G. Lopez, S. Orozco, L. Santamaria, M. Amutio, and M. Olazar. 2022. Analysis of hydrogen production potential from waste plastics by pyrolysis and in line oxidative steam reforming. Fuel Processing Technology 225:107044. doi:10.1016/j.fuproc.2021.107044.
  • Council, H. 2020. Path to hydrogen competitiveness: A cost perspective.
  • Dai, H., and H. Zhu. 2022. Enhancement of partial oxidation reformer by the free-section addition for hydrogen production. Renewable Energy 190:425–33. doi:10.1016/j.renene.2022.03.124.
  • Das, L. 1991. Exhaust emission characterization of hydrogen-operated engine system: Nature of pollutants and their control techniques. International Journal of Hydrogen Energy 16:765–75. doi:10.1016/0360-3199(91)90075-T.
  • Das, L. 2016. Hydrogen-fueled internal combustion engines. Compendium of hydrogen energy. Amsterdam: Elsevier.
  • Dash, S. K., P. Garg, S. Mishra, S. Chakraborty, and D. Elangovan. 2022. Investigation of adaptive intelligent mppt algorithm for a low-cost iot enabled standalone PV system. Australian Journal of Electrical and Electronics Engineering 19:261–69. doi:10.1080/1448837X.2021.2023251.
  • Dawood, F., M. Anda, and G. Shafiullah. 2020. Hydrogen production for energy: An overview. International Journal of Hydrogen Energy 45:3847–69. doi:10.1016/j.ijhydene.2019.12.059.
  • De Miguel, N., R. O. Cebolla, B. Acosta, P. Moretto, F. Harskamp, and C. Bonato. 2015. Compressed hydrogen tanks for on-board application: Thermal behaviour during cycling. International Journal of Hydrogen Energy 40:6449–58. doi:10.1016/j.ijhydene.2015.03.035.
  • Demirbas, A. 2001. Yields of hydrogen-rich gaseous products via pyrolysis from selected biomass samples. Fuel 80:1885–91. doi:10.1016/S0016-2361(01)00070-9.
  • Demirbas, A. 2005. Recovery of chemicals and gasoline-range fuels from plastic wastes via pyrolysis. Energy Sources 27:1313–19. doi:10.1080/009083190519500.
  • Demirbas, A., and G. Arin. 2004. Hydrogen from biomass via pyrolysis: Relationships between yield of hydrogen and temperature. Energy Sources 26:1061–69. doi:10.1080/00908310490494568.
  • Dileep, G. 2020. A survey on smart grid technologies and applications. Renewable Energy 146:2589–625. doi:10.1016/j.renene.2019.08.092.
  • Dincer, I. 2012. Green methods for hydrogen production. International Journal of Hydrogen Energy 37:1954–71. doi:10.1016/j.ijhydene.2011.03.173.
  • Dincer, I., and C. Acar. 2015. Review and evaluation of hydrogen production methods for better sustainability. International Journal of Hydrogen Energy 40:11094–111. doi:10.1016/j.ijhydene.2014.12.035.
  • Dincer, I., and C. Zamfirescu. 2011. Sustainable energy systems and applications. Berlin, Germany: Springer Science & Business Media.
  • Dnv, G. 2014. Integration of renewable energy in Europe. Bonn: Imperial College and NERA Economic Consulting.
  • Duman, G., M. A. Uddin, and J. Yanik. 2014. Hydrogen production from algal biomass via steam gasification. Bioresource Technology 166:24–30. doi:10.1016/j.biortech.2014.04.096.
  • Ekins, P. 2010. Hydrogen energy: Economic and social challenges. Washington DC: Earthscan.
  • Elbadawi, A. H., L. GE, Z. LI, S. Liu, S. Wang, and Z. Zhu. 2021. Catalytic partial oxidation of methane to syngas: Review of perovskite catalysts and membrane reactors. Catalysis Reviews 63:1–67. doi:10.1080/01614940.2020.1743420.
  • El-Shafie, M., S. Kambara, and Y. Hayakawa. 2019. Hydrogen production technologies overview.
  • Erdemir, D., and I. Dincer. 2023. Development and assessment of a novel hydrogen storage unit combined with compressed air energy storage. Applied Thermal Engineering 219:119524. doi:10.1016/j.applthermaleng.2022.119524.
  • Evans, R., and W. Campbell. 1934. Hydrogen: A commercial fuel for internal-combustion engines and other purposes. Journal of the Institute of Fuel;(United Kingdom) 6:277–85.
  • Favas, J., E. Monteiro, and A. Rouboa. 2017. Hydrogen production using plasma gasification with steam injection. International Journal of Hydrogen Energy 42:10997–1005. doi:10.1016/j.ijhydene.2017.03.109.
  • Fch, J. 2015a. Commercialisation of energy storage in Europe. FCH JU, March. 19.
  • Fch, J. 2015b. Commercialisation of energy storage in Europe. Final report. Fuss, S., Lamb, WF, Callaghan, MW, Hilaire, J., Creutzig, F., Amann, T. & Luderer, G.(2018). Negative emissions—Part, 2.
  • Ferrero, D., M. Gamba, A. Lanzini, and M. Santarelli. 2016. Power-to-Gas Hydrogen: Techno-economic assessment of processes towards a multi-purpose energy carrier. Energy Procedia 101:50–57. doi:10.1016/j.egypro.2016.11.007.
  • Fischedick, M., K. Arnold, A. Pastowski, D. Schuwer, J. Adnolf, C. H. Balzer, J. Louis, and U. Schabla. 2017. Shell Wasserstoff-Studie. In Energie der Zukunft? Nachhaltige Mobilität durch Brennstoffzelle und H2, 71. Hamburg: Shell Deutschland Oil GmbH.
  • Galassi, M. C., E. Papanikolaou, D. Baraldi, E. Funnemark, E. Haland, A. Engebo, G. P. Haugom, T. Jordan, and A. V. Tchouvelev. 2012. Hiad–hydrogen incident and accident database. International Journal of Hydrogen Energy 37:17351–57. doi:10.1016/j.ijhydene.2012.06.018.
  • Gammon, B. E. 1951. Preliminary evaluation of the air and fuel specific-impulse characteristics of several potential ram-jet fuels IV: Hydrogen, a-methylnaphthalene, and carbon.
  • Gao, F. -Y., P. -C. YU, and M. -R. GAO. 2022. Seawater electrolysis technologies for green hydrogen production: Challenges and opportunities. Current Opinion in Chemical Engineering 36:100827. doi:10.1016/j.coche.2022.100827.
  • Gentilleau, B., F. Touchard, and J. Granddier. 2014. Numerical study of influence of temperature and matrix cracking on type IV hydrogen high pressure storage vessel behavior. Composite Structures 111:98–110. doi:10.1016/j.compstruct.2013.12.034.
  • Ghenai, C., and M. Bettayeb. 2019. Grid-tied solar PV/fuel cell hybrid power system for university building. Energy Procedia 159:96–103. doi:10.1016/j.egypro.2018.12.025.
  • Gielen, D., E. Taibi, and R. Miranda. 2019. Hydrogen: A renewable energy perspective. Abu Dhabi: International Renewable Energy Agency.
  • Grubb, W., and L. Niedrach. 1960. Batteries with solid ion‐exchange membrane electrolytes: II. Low‐temperature hydrogen‐oxygen fuel cells. Journal of the Electrochemical Society 107:131. doi:10.1149/1.2427622.
  • Han, J. -R., S. -J. Park, H. Kim, S. Lee, and J. M. Lee. 2022. Centralized and distributed hydrogen production using steam reforming: Challenges and perspectives. UK: Sustainable Energy & Fuels.
  • He, H. -Z., Y. Zhang, Y. LI, and P. Wang. 2021. Recent innovations of silk-derived electrocatalysts for hydrogen evolution reaction, oxygen evolution reaction and oxygen reduction reaction. International Journal of Hydrogen Energy 46:7848–65. doi:10.1016/j.ijhydene.2020.11.265.
  • Holladay, J. D., J. Hu, D. L. King, and Y. Wang. 2009. An overview of hydrogen production technologies. Catalysis Today 139:244–60. doi:10.1016/j.cattod.2008.08.039.
  • Hong, S., J. Lee, H. Cho, M. Kim, I. Moon, and J. Kim. 2022. Multi-objective optimization of CO2 emission and thermal efficiency for on-site steam methane reforming hydrogen production process using machine learning. Journal of Cleaner Production 359:132133. doi:10.1016/j.jclepro.2022.132133.
  • Hosseini, S. E. 2022a. Hydrogen has found its way to become the fuel of the future. Future Energy 1:11–12. doi:10.55670/fpll.fuen.1.3.2.
  • Hosseini, S. E. 2022b. Transition away from fossil fuels toward renewables: Lessons from Russia-Ukraine crisis. Future Energy 1:2–5. doi:10.55670/fpll.fuen.1.1.8.
  • Hosseini, S. E., and M. A. Wahid. 2016. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renewable & Sustainable Energy Reviews 57:850–66. doi:10.1016/j.rser.2015.12.112.
  • Iida, S., and K. Sakata. 2019. Hydrogen technologies and developments in Japan. Clean Energy 3:105–13. doi:10.1093/ce/zkz003.
  • Ingersoll, E., and K. Gogan. 2020. Missing link to a livable climate: How hydrogen-enabled synthetic fuels can help deliver the Paris goals. London & Cambridge, MA: LucidCatalyst.
  • Ishaq, H., and I. Dincer. 2020. The role of hydrogen in global transition to 100% renewable energy. Accelerating the Transition to a 100% Renewable Energy Era 74:275–307.
  • Ismail, A. A., and D. W. BAHNEMANN. 2014. Photochemical splitting of water for hydrogen production by photocatalysis: A review. Solar Energy Materials and Solar Cells 128:85–101. doi:10.1016/j.solmat.2014.04.037.
  • Jahromi, A. F., E. Ruiz-Lopez, F. Dorado, E. A. Baranova, and A. DE Lucas-Consuegra. 2022. Electrochemical promotion of ethanol partial oxidation and reforming reactions for hydrogen production. Renewable Energy 183:515–23. doi:10.1016/j.renene.2021.11.041.
  • Jayaweera, D. 2016. Smart power systems and renewable energy system integration. Switzerland: Springer.
  • Kaiwen, L., Y. Bin, and Z. Tao. 2018. Economic analysis of hydrogen production from steam reforming process: A literature review. Energy Sources, Part B: Economics, Planning, & Policy 13:109–15. doi:10.1080/15567249.2017.1387619.
  • Kalamaras, C. M., and A. M. Efstathiou. 2013. Hydrogen production technologies: Current state and future developments. Conference papers in science, Limassol, Cyprus, Hindawi.
  • Kaliski, M., and A. Sikora. 2013. Wodór a podziemne magazynowanie energii w strukturach solnych. Przegląd Solny 9:26–32.
  • Karbouj, H., Z. H. Rather, D. Flynn, and H. W. Qazi. 2019. Non-synchronous fast frequency reserves in renewable energy integrated power systems: A critical review. International Journal of Electrical Power & Energy Systems 106:488–501. doi:10.1016/j.ijepes.2018.09.046.
  • Karimi, M., H. Mokhlis, K. Naidu, S. Uddin, and A. A. Bakar. 2016. Photovoltaic penetration issues and impacts in distribution network–A review. Renewable & Sustainable Energy Reviews 53:594–605. doi:10.1016/j.rser.2015.08.042.
  • Kassakian, J. G., R. Schmalensee, G. Desgroseilliers, T. D. Heidel, K. Afridi, A. Farid, J. Grochow, W. Hogan, H. Jacoby, and J. Kirtley. 2011. The future of the electric grid. US: Massachusetts Institute of Technology 197–234. Tech. Rep
  • Kayan, D. B., T. Baran, and A. Menteş. 2022. Functionalized Rgo-Pd nanocomposites as high-performance catalysts for hydrogen generation via water electrolysis. Electrochimica acta 422:140513. doi:10.1016/j.electacta.2022.140513.
  • Khan, M. A., H. Zhao, W. Zou, Z. Chen, W. Cao, J. Fang, J. Xu, L. Zhang, and J. Zhang. 2018. Recent progresses in electrocatalysts for water electrolysis. Electrochemical Energy Reviews 1:483–530. doi:10.1007/s41918-018-0014-z.
  • Kirkels, A. F., and G. P. Verbong. 2011. Biomass gasification: Still promising? A 30-year global overview. Renewable & Sustainable Energy Reviews 15:471–81. doi:10.1016/j.rser.2010.09.046.
  • Kirkerud, J. G., T. F. Bolkesjø, and E. Trømborg. 2017. Power-to-heat as a flexibility measure for integration of renewable energy. Energy 128:776–84. doi:10.1016/j.energy.2017.03.153.
  • Kothari, R., D. Buddhi, and R. L. Sawhney. 2008. Comparison of environmental and economic aspects of various hydrogen production methods. Renewable & Sustainable Energy Reviews 12:553–63. doi:10.1016/j.rser.2006.07.012.
  • Kruck, O., F. Crotogino, R. Prelicz, and T. Rudolph. 2013. Assessment of the potential, the actors and relevant business cases for large scale and seasonal storage of renewable electricity by hydrogen underground storage in Europe. KBB Undergr Technol GmbH 1–32.
  • Kumar, S. S., and V. Himabindu. 2019. Hydrogen production by PEM water electrolysis–A review. Materials Science for Energy Technologies 2:442–54. doi:10.1016/j.mset.2019.03.002.
  • Kunstman, A., K. Poborska-Młynarska, and K. Urbańczyk. 2009. Geologiczne i górnicze aspekty budowy magazynowych kawern solnych. Przegląd geologiczny 57:819–928.
  • Kuroki, T., N. Sakoda, K. Shinzato, M. Monde, and Y. Takata. 2018. Prediction of transient temperature of hydrogen flowing from pre-cooler of refueling station to inlet of vehicle tank. International Journal of Hydrogen Energy 43:1846–54. doi:10.1016/j.ijhydene.2017.11.033.
  • Lankof, L., and R. Tarkowski. 2020. Assessment of the potential for underground hydrogen storage in bedded salt formation. International Journal of Hydrogen Energy 45:19479–92. doi:10.1016/j.ijhydene.2020.05.024.
  • Li, M., Y. Bai, C. Zhang, Y. Song, S. Jiang, D. Grouset, and M. Zhang. 2019. Review on the research of hydrogen storage system fast refueling in fuel cell vehicle. International Journal of Hydrogen Energy 44:10677–93. doi:10.1016/j.ijhydene.2019.02.208.
  • Li, P., L. Chen, S. Xia, R. Kong, and Y. Ge. 2022. Multi-objective optimal configurations of a membrane reactor for steam methane reforming. Energy Reports 8:527–38. doi:10.1016/j.egyr.2021.11.288.
  • Liu, X., G. Liu, J. Xue, X. Wang, and Q. Li. 2022. Hydrogen as a carrier of renewable energies toward carbon neutrality: State-of-the-art and challenging issues. International Journal of Minerals, Metallurgy & Materials 29:1073–89. doi:10.1007/s12613-022-2449-9.
  • Liu, W., L. Sun, Z. Li, M. Fujii, Y. Geng, L. Dong, and T. Fujita. 2020. Trends and future challenges in hydrogen production and storage research. Environmental Science & Pollution Research 27:31092–104. doi:10.1007/s11356-020-09470-0.
  • Liu, G., Y. Zhao, S. Heberlein, A. Veksha, A. Giannis, W. P. Chan, T. T. Lim, and G. Lisak. 2022. Hydrogen and power co-production from autothermal biomass sorption enhanced chemical looping gasification: Thermodynamic modeling and comparative study. Energy Conversion & Management 269:116087. doi:10.1016/j.enconman.2022.116087.
  • Liu, S., J. Zhu, M. Chen, W. Xin, Z. Yang, and L. Kong. 2014. Hydrogen production via catalytic pyrolysis of biomass in a two-stage fixed bed reactor system. International Journal of Hydrogen Energy 39:13128–35. doi:10.1016/j.ijhydene.2014.06.158.
  • Lokesh, S. P. A., and A. Ranjbar. 2022. Thermodynamic modelling of cryo compressed hydrogen storage tanks for trucks.
  • Lowesmith, B. J., G. Hankinson, and S. Chynoweth. 2014. Safety issues of the liquefaction, storage and transportation of liquid hydrogen: An analysis of incidents and HAZIDS. International Journal of Hydrogen Energy 39:20516–21. doi:10.1016/j.ijhydene.2014.08.002.
  • Luo, X., J. Wang, M. Dooner, and J. Clarke. 2015. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy 137:511–36. doi:10.1016/j.apenergy.2014.09.081.
  • Madden, D. G., D. O’Nolan, N. Rampal, R. Babu, C. Çamur, A. N. Al Shakhs, S. Y. Zhang, G. A. Rance, J. Perez, N. P. Maria Casati, et al. 2022. Densified HKUST-1 monoliths as a route to high volumetric and gravimetric hydrogen storage capacity. Journal of the American Chemical Society 144:13729–39. doi:10.1021/jacs.2c04608.
  • Malleswararao, K., N. Aswin, P. Kumar, P. Dutta, and S. S. Murthy. 2022. Experiments on a novel metal hydride cartridge for hydrogen storage and low temperature thermal storage. International Journal of Hydrogen Energy 47:16144–55. doi:10.1016/j.ijhydene.2022.03.097.
  • Mazumder, G. C., S. N. Shams, M. H. Rahman, and S. Huque. 2021. Production of green hydrogen in Bangladesh and its levelized cost. Dhaka University Journal of Applied Science and Engineering 6:64–71. doi:10.3329/dujase.v6i2.59220.
  • Melaina, M. W., O. Antonia, and M. Penev. 2013. Blending hydrogen into natural gas pipeline networks: A review of key issues.
  • Melideo, D., D. Baraldi, M. C. Galassi, R. O. Cebolla, B. A. Iborra, and P. Moretto. 2014. CFD model performance benchmark of fast filling simulations of hydrogen tanks with pre-cooling. International Journal of Hydrogen Energy 39:4389–95. doi:10.1016/j.ijhydene.2013.12.196.
  • Mielke, E., L. D. Anadon, and V. Narayanamurti. 2010. Water consumption of energy resource extraction, processing, and conversion. Harvard Kennedy School, Harvard University, US: Belfer Center for Science and International Affairs.
  • Moen, C. D., C. B. LaFleur, and C. W. San Marchi. 2017. Hydrogen safety risk assessment and material compatibility R&D. Sandia national lab.(SNL-CA). Livermore, CA (United States): Sandia National.
  • Molburg, J. C., and R. D. Doctor. 2003. Hydrogen from steam-methane reforming with CO2 capture. 20th annual international Pittsburgh coal conference, Pittsburgh, PA. 1–21.
  • Moradi, R., and K. M. Groth. 2019. Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis. International Journal of Hydrogen Energy 44:12254–69. doi:10.1016/j.ijhydene.2019.03.041.
  • Mouli-Castillo, J., G. Orr, J. Thomas, N. Hardy, M. Crowther, R. S. Haszeldine, M. Wheeldon, and A. McIntosh. 2021. A comparative study of odorants for gas escape detection of natural gas and hydrogen. International Journal of Hydrogen Energy 46:14881–93. doi:10.1016/j.ijhydene.2021.01.211.
  • Msheik, M., S. Rodat, and S. Abanades. 2021. Methane cracking for hydrogen production: A review of catalytic and molten media pyrolysis. Energies 14:3107. doi:10.3390/en14113107.
  • Muradov, N. 2003. Emission-free fuel reformers for mobile and portable fuel cell applications. Journal of Power Sources 118:320–24. doi:10.1016/S0378-7753(03)00078-8.
  • Muradov, N. Z., and T. N. Veziroǧlu. 2005. From hydrocarbon to hydrogen–carbon to hydrogen economy. International Journal of Hydrogen Energy 30:225–37. doi:10.1016/j.ijhydene.2004.03.033.
  • Muzhikyan, A., S. O. Muhanji, G. D. Moynihan, D. J. Thompson, Z. M. Berzolla, and A. M. Farid. 2019. The 2017 ISO New England system operational analysis and renewable energy integration study (SOARES). Energy Reports 5:747–92. doi:10.1016/j.egyr.2019.06.005.
  • Nami, H., O. B. Rizvandi, C. Chatzichristodoulou, P. V. Hendriksen, and H. L. Frandsen. 2022. Techno-economic analysis of current and emerging electrolysis technologies for green hydrogen production. Energy Conversion & Management 269:116162. doi:10.1016/j.enconman.2022.116162.
  • Niaz, S., T. Manzoor, and A. H. Pandith. 2015. Hydrogen storage: Materials, methods and perspectives. Renewable & Sustainable Energy Reviews 50:457–69. doi:10.1016/j.rser.2015.05.011.
  • Nikolaidis, P., and A. Poullikkas. 2017. A comparative overview of hydrogen production processes. Renewable & Sustainable Energy Reviews 67:597–611. doi:10.1016/j.rser.2016.09.044.
  • Nunes, L. J. 2022. Biomass gasification as an industrial process with effective proof-of-concept: A comprehensive review on technologies, processes and future developments. Results in Engineering 100408:100408. doi:10.1016/j.rineng.2022.100408.
  • Nurdiawati, A., I. N. Zaini, A. R. Irhamna, D. Sasongko, and M. Aziz. 2019. Novel configuration of supercritical water gasification and chemical looping for highly-efficient hydrogen production from microalgae. Renewable & Sustainable Energy Reviews 112:369–81. doi:10.1016/j.rser.2019.05.054.
  • Ogden, J. M. 2001. Review of small stationary reformers for hydrogen production. Report to the international energy agency, 609.
  • O’hayre, R., S. W. Cha, W. Colella, and F. B. Prinz. 2016. Fuel cell fundamentalsVol. 10, 9781119191766. Hoboken, New Jersey: John Wiley & Sons
  • Oni, A. O., K. Anaya, T. Giwa, G. Di Lullo, and A. Kumar. 2022. Comparative assessment of blue hydrogen from steam methane reforming, autothermal reforming, and natural gas decomposition technologies for natural gas-producing regions. Energy Conversion & Management 254:115245. doi:10.1016/j.enconman.2022.115245.
  • Østergaard, P. A., R. M. Johannsen, and N. Duic. 2020. Sustainable development using renewable energy systems. International journal of sustainable energy planning 2020. Sustainable development using renewable energy systems. International Journal of Sustainable Energy Planning and Management 29:1–6.
  • Parker, N. 2004. Using natural gas transmission pipeline costs to estimate hydrogen pipeline costs.
  • Pasini, J. M., C. Corgnale, B. A. van Hassel, T. Motyka, S. Kumar, and K. L. Simmons. 2013. Metal hydride material requirements for automotive hydrogen storage systems. International Journal of Hydrogen Energy 38:9755–65. doi:10.1016/j.ijhydene.2012.08.112.
  • Patel, S. K., S. Ray, J. Prakash, J. H. Wee, S. Y. Kim, J. K. Lee, and V. C. Kalia. 2019. Co-digestion of biowastes to enhance biological hydrogen process by defined mixed bacterial cultures. Indian Journal of Microbiology 59:154–60. doi:10.1007/s12088-018-00777-8.
  • Pellegrino, S., A. Lanzini, and P. Leone. 2017. Greening the gas network–The need for modelling the distributed injection of alternative fuels. Renewable & Sustainable Energy Reviews 70:266–86. doi:10.1016/j.rser.2016.11.243.
  • Peschka, W. 2012. Liquid hydrogen: Fuel of the future. New York: Springer Science & Business Media.
  • Peterson, C. R., and A. J. Ros. 2018. The future of the electric grid and its regulation: Some considerations. Electricity Journal 31:18–25. doi:10.1016/j.tej.2018.02.001.
  • Petitpas, G., and S. M. Aceves. 2013. Modeling of sudden hydrogen expansion from cryogenic pressure vessel failure. International Journal of Hydrogen Energy 38:8190–98. doi:10.1016/j.ijhydene.2012.03.166.
  • Pierre, I., F. Bauer, R. Blasko, N. Dahlback, M. Dumpelmann, K. Kainurinne, S. Luedge, P. Opdenacker, I. P. Chamorro, D. Romano, et al. 2011. Flexible generation: Backing up renewables. Brussels: EURELECTRIC Renewables Action Plan (RESAP).
  • Pinsky, R., P. Sabharwall, J. Hartvigsen, and J. O’Brien. 2020. Comparative review of hydrogen production technologies for nuclear hybrid energy systems. Progress in Nuclear Energy 123:103317. doi:10.1016/j.pnucene.2020.103317.
  • Preuster, P., A. Alekseev, and P. Wasserscheid. 2017. Hydrogen storage technologies for future energy systems. Annual Review of Chemical and Biomolecular Engineering 8:445–71. doi:10.1146/annurev-chembioeng-060816-101334.
  • Puszkiel, J., A. Gasnier, G. Amica, and F. Gennari. 2019. Tuning LiBH4 for hydrogen storage: Destabilization, additive, and nanoconfinement approaches. Molecules 25:163. doi:10.3390/molecules25010163.
  • Rand, D. A. J., and R. M. Dell. 2007. Hydrogen energy: Challenges and prospects.
  • Rashid, M. D., M. K. Al Mesfer, H. Naseem, and M. Danish. 2015. Hydrogen production by water electrolysis: A review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis. International Journal of Engineering and Advanced Technology 4(3): 2249–8958.
  • Ratnakar, R. R., N. Gupta, K. Zhang, C. van Doorne, J. Fesmire, B. Dindoruk, and V. Balakotaiah. 2021. Hydrogen supply chain and challenges in large-scale LH2 storage and transportation. International Journal of Hydrogen Energy 46:24149–68. doi:10.1016/j.ijhydene.2021.05.025.
  • Ren, J., N. M. Musyoka, H. W. Langmi, M. Mathe, and S. Liao. 2017. Current research trends and perspectives on materials-based hydrogen storage solutions: A critical review. International Journal of Hydrogen Energy 42:289–311. doi:10.1016/j.ijhydene.2016.11.195.
  • Ricardo, H. R. 1923. Further note on fuel research. Proc Institution Automotive Engineers 18:327.
  • Riley, J., C. Atallah, R. Siriwardane, and R. Stevens. 2021. Technoeconomic analysis for hydrogen and carbon Co-Production via catalytic pyrolysis of methane. International Journal of Hydrogen Energy 46:20338–58. doi:10.1016/j.ijhydene.2021.03.151.
  • Rivard, E., M. Trudeau, and K. Zaghib. 2019. Hydrogen storage for mobility: A review. Materials 12:1973. doi:10.3390/ma12121973.
  • Safarian, S., R. Unnthorsson, and C. Richter. 2022. Hydrogen production via biomass gasification: Simulation and performance analysis under different gasifying agents. Biofuels 13:717–26. doi:10.1080/17597269.2021.1894781.
  • Safari, F., and I. Dincer. 2022. Assessment and multi-objective optimization of a vanadium-chlorine thermochemical cycle integrated with algal biomass gasification for hydrogen and power production. Energy Conversion & Management 253:115132. doi:10.1016/j.enconman.2021.115132.
  • Sai, D. P., N. Kumar, and V. Saxena. 2022. Analysis of the potential metal hydrides for hydrogen storage in automobile applications. Advanced Combustion for Sustainable Transport 299–330.
  • Salkeld, R. 1971. Mixed-mode propulsion for the space shuttle(Mixed mode propulsion system for optimization of reusable space shuttle, discussing one-stage-to- orbit vehicle advantages and feasibility). Astronautics and Aeronautics 9:52–58.
  • Samantara, A. K., and S. Ratha. 2019. Metal oxides/chalcogenides and composites: Emerging materials for electrochemical water splitting. New York: Springer.
  • Sánchez-Bastardo, N., R. Schlogl, and H. Ruland. 2021. Methane pyrolysis for zero-emission hydrogen production: A potential bridge technology from fossil fuels to a renewable and sustainable hydrogen economy. Industrial & Engineering Chemistry Research 60:11855–81. doi:10.1021/acs.iecr.1c01679.
  • Sanchez-Hidalgo, M. A., and M. D. Cano. 2018. A survey on visual data representation for smart grids control and monitoring. Sustainable Energy, Grids and Networks 16:351–69. doi:10.1016/j.segan.2018.09.007.
  • Sapountzi, F. M., J. M. Gracia, H. O. Fredriksson, J. H. Niemantsverdriet, and J. W. (. Niemantsverdriet. 2017. Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. Progress in Energy & Combustion Science 58:1–35. doi:10.1016/j.pecs.2016.09.001.
  • Schastlivtsev, A. I., and V. I. Borzenko. 2017 October. Hydrogen-oxygen steam generator applications for increasing the efficiency, maneuverability and reliability of power production. Journal of Physics: Conference Series, 2017, Moscow, Russian Federation, IOP Publishing, 012213.
  • Schlapbach, L., and A. Züttel. 2001. Hydrogen-storage materials for mobile applications. Nature 414:353–58. doi:10.1038/35104634.
  • Scott, R. B., W. H. Denton, and C. M. Nicholls, eds. 2013. Technology and uses of liquid hydrogen. Amsterdam: Elsevier.
  • Seetharaman, S., R. Balaji, K. Ramya, K. S. Dhathathreyan, and M. Velan. 2013. Graphene oxide modified non-noble metal electrode for alkaline anion exchange membrane water electrolyzers. International Journal of Hydrogen Energy 38:14934–42. doi:10.1016/j.ijhydene.2013.09.033.
  • Shamsi, M., A. A. Obaid, S. Farokhi, and A. Bayat. 2022. A novel process simulation model for hydrogen production via reforming of biomass gasification tar. International Journal of Hydrogen Energy 47:772–81. doi:10.1016/j.ijhydene.2021.10.055.
  • Shaqsi, A. Z. A., K. Sopian, and A. Al-Hinai. 2020. Review of energy storage services, applications, limitations, and benefits. Energy Reports 6:288–306. doi:10.1016/j.egyr.2020.07.028.
  • Sharma, S., and S. K. Ghoshal. 2015. Hydrogen the future transportation fuel: From production to applications. Renewable & Sustainable Energy Reviews 43:1151–58. doi:10.1016/j.rser.2014.11.093.
  • Silverstein, A., and E. W. Hall. 1955. Liquid hydrogen as a jet fuel for high-altitude aircraft. US: National Aeronautics and Space Administration Cleveland Oh Lewis Research Center.
  • Singh, S. P., R. K. Asthana, and A. P. Singh. 2007. Prospects of sugarcane milling waste utilization for hydrogen production in India. Energy Policy 35:4164–68. doi:10.1016/j.enpol.2007.02.017.
  • Singla, M. K., P. Nijhawan, and A. S. Oberoi. 2021. Hydrogen fuel and fuel cell technology for cleaner future: A review. Environmental Science & Pollution Research 28:15607–26. doi:10.1007/s11356-020-12231-8.
  • Sloop, J. L. 1981. Liquid-hydrogen for space-flight-the long step from proposal to reality. Journal of the Astronautical Sciences 29:373–81.
  • Smith, J. R., S. Gkantonas, and E. Mastorakos. 2022. Modelling of boil-off and sloshing relevant to future liquid hydrogen carriers. Energies, 15:2046.
  • Sørensen, B. E. N. T. 2007. Underground hydrogen storage in geological formations, and comparison with other storage solutions. In Hydrogen power theoretical and engineering international symposium VII”, Merida, Mexico, Paper HU-02: CDROM. January.
  • Sternfeld, H. J., and P. Heinrich. 1989. A demonstration plant for the hydrogen/oxygen spinning reserve. International Journal of Hydrogen Energy 14:703–16. doi:10.1016/0360-3199(89)90087-6.
  • Stolten, D., R. C. Samsun, and N. Garland, eds. 2016. Fuel cells: Data, facts, and figures. Hoboken, New Jersey: John Wiley & Sons.
  • Suman, S. 2018. Hybrid nuclear-renewable energy systems: A review. Journal of Cleaner Production 181:166–77. doi:10.1016/j.jclepro.2018.01.262.
  • Tareen, W. U., S. Mekhilef, M. Seyedmahmoudian, and B. Horan. 2017. Active power filter (APF) for mitigation of power quality issues in grid integration of wind and photovoltaic energy conversion system. Renewable & Sustainable Energy Reviews 70:635–55. doi:10.1016/j.rser.2016.11.091.
  • Tasneem, A., and A. Sa. 2011. ‘Renewable’hydrogen: Prospects and challenges. Renewable & Sustainable Energy Reviews 15:3034–40. doi:10.1016/j.rser.2011.02.026.
  • Taube, M., D. W. T. Rippin, D. L. Cresswell, and W. Knecht. 1983. A system of hydrogen-powered vehicles with liquid organic hydrides. International Journal of Hydrogen Energy 8:213–25. doi:10.1016/0360-3199(83)90067-8.
  • Taylor, J. B., J. E. A. Alderson, K. M. Kalyanam, A. B. Lyle, and L. A. Phillips. 1986. Technical and economic assessment of methods for the storage of large quantities of hydrogen. International Journal of Hydrogen Energy 11:5–22. doi:10.1016/0360-3199(86)90104-7.
  • Tezer, Ö., N. Karabağ, A. Öngen, C. Ö. Çolpan, and A. Ayol. 2022. Biomass gasification for sustainable energy production: A review. International Journal of Hydrogen Energy 47:15419–33. doi:10.1016/j.ijhydene.2022.02.158.
  • Thellufsen, J. Z., H. Lund, P. Sorknæs, P. A. Østergaard, M. Chang, D. Drysdale, S. Nielsen, S. R. Djørup, and K. Sperling. 2020. Smart energy cities in a 100% renewable energy context. Renewable & Sustainable Energy Reviews 129:109922. doi:10.1016/j.rser.2020.109922.
  • Thomas, G. 2000. Overview of storage development DOE hydrogen program. Sandia National Laboratories 9.
  • Twaha, S., and M. A. Ramli. 2018. A review of optimization approaches for hybrid distributed energy generation systems: Off-grid and grid-connected systems. Sustainable Cities and Society 41:320–31. doi:10.1016/j.scs.2018.05.027.
  • Uliasz-Misiak, B., and A. Przybycin. 2016. Present and future status of the underground space use in Poland. Environmental Earth Sciences 75:1–15. doi:10.1007/s12665-016-6227-8.
  • Ursua, A., L. M. Gandia, and P. Sanchis. 2011. Hydrogen production from water electrolysis: Current status and future trends. Proceedings of the IEEE, 100, 410–26.
  • Velasquez, M. A., J. Barreiro-Gomez, N. Quijano, A. I. Cadena, and M. Shahidehpour. 2019. Distributed model predictive control for economic dispatch of power systems with high penetration of renewable energy resources. International Journal of Electrical Power & Energy Systems 113:607–17. doi:10.1016/j.ijepes.2019.05.044.
  • Vermeiren, P., W. Adriansens, J. P. Moreels, and R. Leysen. 1998. Evaluation of the Zirfon® separator for use in alkaline water electrolysis and Ni-H2 batteries. International Journal of Hydrogen Energy 23:321–24. doi:10.1016/S0360-3199(97)00069-4.
  • Wang, Z., T. He, J. Qin, J. WuU, J. LI, Z. ZI, G. LIU, J. WU, and L. Sun. 2015. Gasification of biomass with oxygen-enriched air in a pilot scale two-stage gasifier. Fuel 150:386–93. doi:10.1016/j.fuel.2015.02.056.
  • Wang, C., M. Liao, Z. Jiang, B. Liang, J. Weng, Q. Song, M. Zhao, Y. Chen, and L. Lei. 2022. Sorption-enhanced propane partial oxidation hydrogen production for solid oxide fuel cell (SOFC) applications. Energy 247:123463. doi:10.1016/j.energy.2022.123463.
  • Wang, H., R. Ren, B. LIU, and Y. O. U. C. 2022. Hydrogen production with an auto-thermal MSW steam gasification and direct melting system: A process modeling. International Journal of Hydrogen Energy 47:6508–18. doi:10.1016/j.ijhydene.2021.12.009.
  • Wang, H., B. Wang, Q. Pan, Y. WU, L. Jlang, Z. Wang, and Z. Gan. 2022. Modeling and thermodynamic analysis of thermal performance in self-pressurized liquid hydrogen tanks. International Journal of Hydrogen Energy 47:30530–45. doi:10.1016/j.ijhydene.2022.07.027.
  • Wang, P., X. Zhang, R. Shi, J. Zhao, Z. Yuan, and T. Zhang. 2022. Light-driven hydrogen production from steam methane reforming via bimetallic PdNi catalysts derived from layered double hydroxide nanosheets. Energy & Fuels 36:11627–35. doi:10.1021/acs.energyfuels.2c01349.
  • Wang, H., Y. Zhao, X. Dong, J. Yang, H. Guo, and M. Gong. 2022. Thermodynamic analysis of low-temperature and high-pressure (cryo-compressed) hydrogen storage processes cooled by mixed-refrigerants. International Journal of Hydrogen Energy 47:28932–44. doi:10.1016/j.ijhydene.2022.06.193.
  • Weber, M., and J. Perrin. 2008. Hydrogen transport and distribution. Hydrogen technology: Mobile and portable applications, 129–49. Berlin: Springer.
  • Whitlow, J. R., J. B, R. J. Weber, and K. C. Civinskas. 1972. Preliminary appraisal of hydrogen and methane fuel in a Mach 2.7 supersonic transport.
  • Widera, B. 2020. Renewable hydrogen implementations for combined energy storage, transportation and stationary applications. Thermal Science and Engineering Progress 16:100460. doi:10.1016/j.tsep.2019.100460.
  • Williams, O., R. Botwin, Y. Brill, M. Ellison, F. Forbes, S. Giffoni, V. Monteil, and L. Thompson. 1976. Liquid rockets in perspective. I- Developments in the 1960 s. Astronautics and Aeronautics 14:47–57.
  • Wong, J., Y. S. Lim, J. H. Tang, and E. Morris. 2014. Grid-connected photovoltaic system in Malaysia: A review on voltage issues. Renewable & Sustainable Energy Reviews 29:535–45. doi:10.1016/j.rser.2013.08.087.
  • Wong, Y. M., T. Y. Wu, and J. C. Juan. 2014. A review of sustainable hydrogen production using seed sludge via dark fermentation. Renewable & Sustainable Energy Reviews 34:471–82. doi:10.1016/j.rser.2014.03.008.
  • Wright, D., A. Lucci, J. Campbell, and J. Lee. 1978. Hydrogen turbine power conversion system assessment.
  • Xia, Y., Z. Yang, and Y. Zhu. 2013. Porous carbon-based materials for hydrogen storage: Advancement and challenges. Journal of Materials Chemistry A 1:9365–81. doi:10.1039/c3ta10583k.
  • Yang, Y., H. Xu, Q. Lu, W. Bao, L. Lin, B. AI, and B. Zhang. 2020. Development of standards for hydrogen storage and transportation. E3S Web of Conferences, Shanghai, China, EDP Sciences, 2018.
  • Yan, Y., Z. XU, F. Han, Z. Wang, and Z. NI. 2022. Energy control of providing cryo-compressed hydrogen for the heavy-duty trucks driving. Energy 242:122817. doi:10.1016/j.energy.2021.122817.
  • Yao, S., and X. Yang. 2022. Research progress of lossless and safe storage technology for cryogenic liquid tanks. International Journal of Green Energy 19:1230–51. doi:10.1080/15435075.2021.1987915.
  • Yu, M., W. Chen, R. Kania, G. Vanboven, and J. Been. 2016. Crack propagation of pipeline steel exposed to a near-neutral pH environment under variable pressure fluctuations. International Journal of Fatigue 82:658–66. doi:10.1016/j.ijfatigue.2015.09.024.
  • Zeng, K., and D. Zhang. 2010. Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy & Combustion Science 36:307–26. doi:10.1016/j.pecs.2009.11.002.
  • Zhao, X., Y. Yan, J. Zhang, F. Zhang, Z. Wang, and Z. NI. 2022. Analysis of multilayered carbon fiber winding of cryo-compressed hydrogen storage vessel. International Journal of Hydrogen Energy 47:10934–46. doi:10.1016/j.ijhydene.2022.01.136.
  • Zhen, X., and Y. Wang. 2015. An overview of methanol as an internal combustion engine fuel. Renewable & Sustainable Energy Reviews 52:477–93. doi:10.1016/j.rser.2015.07.083.
  • Zhu, Q. -L., and Q. Xu. 2014. Metal–organic framework composites. Chemical Society Reviews 43:5468–512. doi:10.1039/C3CS60472A.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.