104
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of carbon nanodots coating and airflow rate on the thermal efficiency of flat plate collector

ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 5982-5993 | Received 09 Feb 2023, Accepted 02 May 2023, Published online: 15 May 2023

References

  • Abdelkader, T. K., Y. Zhang, E. S. Gaballah, S. Wang, Q. Wan, and Q. Fan. 2019. Energy and exergy analysis of a flat-plate solar air heater coated with carbon nanotubes and cupric oxide nanoparticles embedded in black paint. Journal of Cleaner Production 250:119501. doi:10.1016/j.jclepro.2019.119501.
  • Ahmadi, A., D. D. Ganji, and F. Jafarkazemi. 2016. Analysis of utilizing Graphene nanoplatelets to enhance thermal performance of flat plate solar collectors. Energy Conversion and Management 126:1–11. doi:10.1016/j.enconman.2016.07.061.
  • Arunachalam, U. P., and M. Edwin. 2017. Experimental investigations on thermal performance of solar air heater with different absorber plates. International Journal of Heat and Technology 35 (2):393–97. doi:10.18280/ijht.350223.
  • Ashraf, P. M., S. Stephen, and P. K. Binsi. 2021. Sustainable process to co-synthesize nano carbon dots, nano hydroxyapatite and nano β-dicalcium diphosphate from the fish scale. Applied Nanoscience 11 (6):1929–47. doi:10.1007/s13204-021-01875-8.
  • Caldarelli, A., E. Gaudino, D. De Luca, U. Farooq, M. Musto, E. Di Gennaro, and R. Russo. 2023. Low emissivity thin film coating to enhance the thermal conversion efficiency of selective solar absorber in high vacuum flat plate collectors. Thin Solid Films 764:139632. doi:10.1016/j.tsf.2022.139632.
  • Chabane, F., N. Moummi, and S. Benramache. 2014. Experimental study of heat transfer and thermal performance with longitudinal fins of solar air heater. Journal of Advanced Research 5 (2):183–92. doi:10.1016/j.jare.2013.03.001.
  • Chabane, F., N. Moummi, S. Benramache, and A. S. Tolba. 2012. Experimental study of heat transfer and an effect the tilt angle with variation of the mass flow rates on the solar air heater. International Journal of Scientific Engineering Investigations 1 (9):61–65. http://fr.scribd.com/doc/157897009/Experimental-Study-of-Heat-Transfer-and-an-Effect-the-TiltAngle-with-Variation-of-the-Mass-Flow-Rates-on-the-Solar-Air-Heater.
  • Chand, S., P. Chand, and H. K. Ghritlahre. 2022. Thermal performance enhancement of solar air heater using louvered fins collector. Solar Energy 239:10–24. doi:10.1016/j.solener.2022.04.046.
  • Colangelo, G., E. Favale, P. Miglietta, and A. de Risi. 2016. Innovation in flat solar thermal collectors: A review of the last ten years experimental results. Renewable & Sustainable Energy Reviews 57:1141–59. doi:10.1016/j.rser.2015.12.142.
  • D’Alessandro, C., D. De Maio, M. Musto, D. De Luca, E. Di Gennaro, P. Bermel, and R. Russo. 2021. Performance analysis of evacuated solar thermal panels with an infrared mirror. Applied Energy 288:116603. doi:10.1016/j.apenergy.2021.116603.
  • De Maio, D., C. D’Alessandro, A. Caldarelli, M. Musto, and R. Russo. 2022. Solar selective coatings for evacuated flat plate collectors: Optimisation and efficiency robustness analysis. Solar Energy Materials and Solar Cells 242:111749. doi:10.1016/j.solmat.2022.111749.
  • El-Sebaii, A. A., S. Aboul-Enein, M. R. I. Ramadan, S. SM, and M. BM. 2011. Thermal performance investigation of double pass-finned plate solar air heater. Appl Energy 88 (5):1727–39. doi:10.1016/j.apenergy.2010.11.017.
  • Gao, D., S. Zhong, X. Ren, T. H. Kwan, and G. Pei. 2022. The energetic, exergetic, and mechanical comparison of two structurally optimized non-concentrating solar collectors for intermediate temperature applications. Renewable Energy 184:881–98. doi:10.1016/j.renene.2021.12.025.
  • Ho, C. D., H. M. Yeh, and R. C. Wang. 2005. Heat-transfer enhancement in double-pass flat plate solar air heaters with recycle. Energy 30 (15):2796–817. doi:10.1016/j.energy.2005.01.006.
  • Kabeel, A. E., R. Sathyamurthy, S. W. Sharshir, A. Muthumanokar, H. Panchal, N. Prakash, C. Prasad, S. Nandakumar, and M. S. El Kady. 2019. Effect of water depth on a novel absorber plate of pyramid solar still coated with TiO2 nano black paint. Journal of Cleaner Production 213:185–91. doi:10.1016/j.jclepro.2018.12.185.
  • Kafle, B. P., B. Basnet, B. Timalsina, A. Deo, T. N. Malla, N. Acharya, and A. Adhikari. 2022. Optical, structural and thermal performances of black nickel selective coatings for solar thermal collectors. Solar Energy 234:262–74. doi:10.1016/j.solener.2022.01.042.
  • Kang, C., Y. Huang, H. Yang, X. F. Yan, and Z. P. Chen. 2020. A review of carbon dots Produced from biomass wastes. Nanomaterials 10:2316. doi:10.3390/nano10112316.
  • Karwa, R., and K. Chauhan. 2010. Performance evaluation of solar air heaters having v-down discrete rib roughness on the absorber plate. Energy 35 (1):398–409. doi:10.1016/j.energy.2009.10.007.
  • Kumar, K. P., S. Mallick, and S. Sakthivel. 2022. Nanoparticles based single and tandem stable solar selective absorber coatings with wide angular solar absorptance. Solar Energy Materials and Solar Cells 242:111758. doi:10.1016/j.solmat.2022.111758.
  • Kurtbas, I., and A. Durmus. 2004. Efficiency and exergy analysis of a new solar air heater. Renewable Energy 29 (9):1489–501. doi:10.1016/j.renene.2004.01.006.
  • Labed, A., N. Moummi, A. Benchabane, and M. Zellouf. 2015. Experimental analysis of heat transfer in the flow channel duct of solar air heaters (SAHs). International Journal of Heat and Technology 33 (3):97–102. doi:10.18280/ijht.330314.
  • Li, D., W. Li, H. Zhang, X. Zhang, J. Zhuang, Y. Liu, C. Hu, and B. Lei. 2020. Far-red carbon dots as efficient light-harvesting agents for enhanced photosynthesis. ACS Applied Materials and Interfaces 12 (18):21009–19. doi:10.1021/acsami.9b21576.
  • Madhukeshwara, N., and E. S. Prakash. 2012. An investigation on the performance characteristics of solar flat plate collector with different selective surface coatings. International Journal of Energy and Environmental 3 (1):99–108.
  • Muralee Gopi, C., S. Ravi, S. Rao, A. E. Reddy, and H. J. Kim. 2017. Carbon nanotube/metal-sulfide composite flexible electrodes for high-performance quantum dot-sensitized solar cells and supercapacitors. Scientific Reports 7:46519. doi:10.1038/srep46519.
  • Papaioannou, N., A. Marinovic, N. Yoshizawa, A. E. Goode, M. Fay, A. Khlobystov, M. M. Titirici, and A. Sapelkin. 2018. Structure and solvents effects on the optical properties of sugar-derived carbon nanodots. Scientific Reports 8 (1):6559. doi:10.1038/s41598-018-25012-8.
  • Patel, V. B., and S. N. Chaudhary. 2013. Thermal analysis on solar air heater with corrugated absorber plate and amul cool aluminum cans. Indian Journal of Applied Research 3 (6):209–12. doi:10.15373/2249555X/JUNE2013/69.
  • Qiu, Y., M. Xu, Q. Li, Y. Xu, and J. Wang. 2021. A novel evacuated receiver improved by a spectral-selective glass cover and rabbit-ear mirrors for parabolic trough collector - sciencedirect. Energy Conversion & Management 227:113589. doi:10.1016/j.enconman.2020.113589.
  • Rani, P., and P. P. Tripathy. 2020. Thermal characteristics of flat plate collector: Influence of air mass flow rate and correlation analysis among process parameters. Solar Energy 211 (15):464–77. doi:10.1016/j.solener.2020.08.057.
  • Saini, R. P., and J. Verma. 2008. Heat transfer and friction factor correlations for a duct having dimple-shape artificial roughness for solar air heaters. Energy 33 (8):1277–87. doi:10.1016/j.energy.2008.02.017.
  • Sakhaei, S. A., and M. S. Valipour. 2019. Investigation on the effect of different coated absorber plates on the thermal efficiency of the flat-plate solar collector. Journal of Thermal Analysis and Calorimetry 140 (3):1597–610. doi:10.1007/s10973-019-09148-x.
  • Salih, M. M. M., O. R. Alomar, and H. N. S. Yassien. 2021. Impacts of adding porous media on performance of double-pass solar air heater under natural and forced air circulation processes. International Journal of Mechanical Sciences 210 (1):106738. doi:10.1016/j.ijmecsci.2021.106738.
  • Sankar, J., and J. Rajasekhar. 2022. Thermal analyses on nanocarbon-Cr2O3 coated fins and Solar collector with nanostructured materials. Materials Research Innovations 26 (3):176–81. doi:10.1080/14328917.2021.1926726.
  • Sivakumar, S., C. Velmurugan, E. Jacob Dhas DS, A. Brusly Solomon, and K. Leo Dev Wins. 2020. Effect of nano cupric oxide coating on the forced convection performance of a mixed-mode flat plate solar dryer. Renew Energy 155:1165–72. doi:10.1016/j.renene.2020.04.027.
  • Smrithi, S. P. N., K. Nagaraju, and S. G. Prasanna Kumar. 2020. Green synthesized luminescent carbon nanodots for the sensing application of Fe3+ Ions. Journal of Fluorescence 30. doi:10.1007/s10895-020-02505-2.
  • Sundar, L. S., M. K. Singh, I. Bidkin, and A. C. M. Sousa. 2014. Experimental investigations in heat transfer and friction factor of magnetic Ni nanofluid flowing in a tube. International Journal of Heat and Mass Stansfer 70:224–34. doi:10.1016/j.ijheatmasstransfer.2013.11.004.
  • Visa, I., A. Duta, M. Comsit, M. Moldovan, D. Ciobanu, R. Saulescu, and B. Burduhos. 2015. Design and experimental optimization of a novel flat plate solar thermal collector with trapezoidal shape for facades integration. Applied Thermal Engineering 90:432–43. doi:10.1016/J.APPLTHERMALENG.2015.06.026.
  • Wang, Y., Q. Zhuang, and Y. Ni. 2015. Facile microwave assisted solid phase synthesis of highly fluorescent nitrogen sulfur co-doped carbon quantum dots for cellular imaging applications. European Journal of Chemistry 21 (37):13004–11. doi:10.1002/chem.201501723.
  • Yassien, H. N. S., O. R. Alomar, and M. M. M. Salih. 2020. Performance analysis of triple-pass solar air heater system: Effects of adding a net of tubes below absorber surface. Solar Energy 207:813–24. doi:10.1016/j.solener.2020.07.041.
  • Yeh, H. M., C. D. Ho, and J. Z. Hou. 2002. Collector efficiency of double-flow solar air heaters with fins attached. Energy 27 (8):715–27. doi:10.1016/S0360-5442(02)00010-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.