162
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Fatty boron ethers as new organic solid-liquid phase change materials: tridodecylborate, tritetradecylborate and trioctadecylborate

& ORCID Icon
Pages 6248-6261 | Received 28 Oct 2022, Accepted 10 May 2023, Published online: 17 May 2023

References

  • Abdulrahman, I. Y., S. T. Thomas, S. Bulina, and N. V. Gerasimov KB. 2018. Complex of polyvinyl alcohol with boric acid: Structure and use. Materials Today Communications 14:77–81. doi:10.1016/j.mtcomm.2017.12.012.
  • Alkan, C., C. Rathgeber, P. Hennemann, and S. Hiebler. 2019. Poly(ethylene-co-1-tetradecylacrylate) and poly(ethylene-co-1-octadecylacrylate) copolymers as novel solid–solid phase change materials for thermal energy storage. Polymer Bulletin 76:2021–39. doi:10.1007/s00289-018-2478-8.
  • Arshad, A., H. M. Ali, M. Ali, and S. Manzoor. 2017. Thermal performance of phase change material (PCM) based pin-finned heat sinks for electronics devices: Effect of pin thickness and PCM volume fraction. Applied Thermal Engineering 112:143–55. doi:10.1016/j.applthermaleng.2016.10.090.
  • Aumporn, O., B. Zeghmati, X. Chesneau, and S. Janjai. 2018. Numerical study of a solar greenhouse dryer with a phase-change material as an energy storage medium. Heat Transfer Research 49:509–28. doi:10.1615/HeatTransRes.2018020132.
  • Aydin, A. A., and A. Aydin. 2012. High-chain fatty acid esters of 1-hexadecanol for low temperature thermal energy storage with phase change materials. Solar Energy Materials & Solar Cells 96:93–100. doi:10.1016/j.solmat.2011.09.013.
  • Bahrar, M., Z. I. Djamai, M. E. L. Mankibi, A. Larbi, and M. Salvia. 2018. Numerical and experimental study on the use of microencapsulated phase change materials (PCMs) in textile reinforced concrete panels for energy storage. Sustainable Cities and Society 41:455–68. doi:10.1016/j.scs.2018.06.014.
  • Cabus, C., K. Bogaerts, V. J. Mechelen, M. Smet, and B. Goderis. 2013. Monotropic polymorphism in ester-based phase change materials from fatty acids and 1,4-butanediol. Crystal Growth & Design 13 (8):3438–46. doi:10.1021/cg400339z.
  • Cabus, U., M. Secme, C. Kabukcu, N. Cil, Y. Dodurga, G. Mete, and I. V. Fenkci. 2021. Boric acid as a promising agent in the treatment of ovarian cancer: Molecular mechanisms. Gene 796–797:145799. doi:10.1016/Jgene.2021.145799.
  • Cárdenas-Ramírez, C., M. A. Gómez, F. Jaramillo, A. F. Cardona, A. G. Fernández, and L. F. Cabeza. 2022. Experimental steady-state and transient thermal performance of materials for thermal energy storage in building applications: From powder SS-PCMs to SS-PCM-based acrylic plaster. Energy 250:123768. doi:10.1016/j.energy.2022.123768.
  • Chang, Z., K. Wang, X. Wu, G. Lei, Q. Wang, H. Liu, Y. Wang, and Q. Zhang. 2022. Review on the preparation and performance of paraffin-based phase change microcapsules for heat storage. Journal of Energy Storage 46:103840. doi:10.1016/j.est.2021.103840.
  • Diarce, G. I., A. Gandarias, U. J. Campos-Celador, G. García-Romero, and U. J. Griesser. 2015. Eutectic mixtures of sugar alcohols for thermal energy storage in the 50–90°C temperature range. Solar Energy Materials & Solar Cells 134:215–26. doi:10.1016/j.solmat.2014.11.050.
  • Dong, L., Z. Wang, Y. Wu, C. Liu, and M. Arıcı. 2021. Experimental investigation on thermal properties of Al2O3 nanoparticles dispersed paraffin for thermal energy storage applications. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects. doi:10.1080/15567036.2021.1916133.
  • Eldokaishi, A. O., M. Y. Abdelsalam, M. M. Kamal, and H. A. Abotaleb. 2022. Modeling of water-PCM solar thermal storage system for domestic hot water application using artificial neural networks. Applied Thermal Engineering 204:118009. doi:10.1016/j.applthermaleng.2021.118009.
  • Fauzi, H., H. S. C. Metselaar, T. M. I. Mahlia, M. Silakhori, and H. Nur. 2013. Phase change material: Optimizing the thermal properties and thermal conductivity of myristic acid/palmitic acid eutectic mixture with acid-based surfactants. Applied Thermal Engineering 60:261–65. doi:10.1016/j.applthermaleng.2013.06.050.
  • Gui, H., Y. Li, D. Du, F. Liang, and Z. Yang. 2021. High-performance phase change material capsule by Janus particle. Materials Today Energy 20:100702. doi:10.1016/j.mtener.2021.100702.
  • Keskin, S. A., and H. S. Kol. 2022. Effects of manufacturing conditions on the properties of boric acid/Melamine-urea-formaldehyde microcapsules prepared by in situ polymerization: Its inhibition behavior on wood destroying fungi. BioResources 17 (4):6789–803. doi:10.15376/biores.17.4.6789-6803.
  • Kumar, N., and D. Banerjee. 2019. Thermal cycling of calcium chloride hexahydrate with strontium chloride as a phase change material for latent heat thermal energy storage applications in a nondifferential scanning calorimeter set-up. Journal of Thermal Science and Engineering Applications 11 (5):051014. doi:10.1115/1.4042859.
  • Liu, H., Z. Qian, Q. Wang, D. Wu, and X. Wang. 2021. Development of renewable biomass-derived carbonaceous aerogel/Mannitol phase-change composites for high thermal-energy-release efficiency and shape stabilization. ACS Applied Energy Materials 4 (2):1714–30. doi:10.1021/acsaem.0c02864.
  • Liu, Y., and Y. Yang. 2017. Use of nano-α-Al2O3 to improve binary eutectic hydrated salt as phase change material. Solar Energy Materials & Solar Cells 160:18–25. doi:10.1016/j.solmat.2016.09.050.
  • Magro, F. D., M. J. Arreola, and A. Romagnoli. 2017. Improving energy recovery efficiency by retrofitting a PCM-based technology to an ORC system operating under thermal power fluctuations. Applied Energy 208:972–85. doi:10.1016/j.apenergy.2017.09.054.
  • Ma, X., Y. Liu, H. Liu, L. Zhang, B. Xu, and F. Xiao. 2018. Fabrication of novel slurry containing graphene oxide-modified microencapsulated phase change material for direct absorption solar collector. Solar Energy Materials & Solar Cells 188:73–80. doi:10.1016/j.solmat.2018.08.021.
  • Mostashari, S. M., and S. Z. Mostashari. 2008. Thermogravimetry review of the synergism between the sodium polymetaphosphate and boric acid used as a flame retardant for cotton fabrics. Cellulose Chemistry and Technology 42 (4–6):241–46.
  • Parameshwaran, R., R. Jayavel, and S. Kalaiselvam. 2013. Study on thermal properties of organic ester phase-change material embedded with silver nanoparticles. Journal of Thermal Analysis and Calorimetry 114:845–58. doi:10.1007/s10973-013-3064-9.
  • Peak, D., G. W. Luther, and D. L. Sparks. 2003. ATR-FTIR spectroscopic studies of boric acid adsorption on hydrous ferric oxide. Geochimica et cosmochimica acta 67 (14):2551–60. doi:10.1016/S0016-7037(03)00096-6.
  • Pielichowska, K. 2014. Phase change materials for thermal energy storage. Progress in Materials Science 65:67–123. doi:10.1016/j.pmatsci.2014.03.005.
  • Rao, K. P., Y. V. R. K. Prasad, and C. L. Xie. 2011. Further evaluation of boric acid vis-à-vis other lubricants for cold forming applications. Tribology International 44 (10):1118–26. doi:10.1016/j.triboint.2011.04.016.
  • Rathgeber, C., H. Schmit, and S. Hiebler. 2013. Mixtures of alkanes, fatty acids and alcohols as novel phase change materials: Preparation and characterization with DSC and Time/Temperature. 2nd International Conference on Sustainable Energy Storage in Buildings. Dublin.
  • Rozanna, D., T. G. Chuah, A. Salmiah, T. S. Y. Choong, and M. Sa’ari. 2005. Fatty acids as Phase Change Materials (PCMs) for thermal energy storage: A review. International Journal of Green Energy 1 (4):495–513. doi:10.1081/GE-200038722.
  • Schmidt, M. P., S. D. Siciliano, and D. Peak. 2021. The role of monodentate tetrahedral borate complexes in boric acid binding to a soil organic matter analogue. Chemosphere 276:130150. doi:10.1016/j.chemosphere.2021.130150.
  • Sharma, A., and R. Chauhan. 2022. Integrated and separate collector storage type low-temperature solar water heating systems with latent heat storage: A review. Sustainable Energy Technologies and Assessments 51:101935. doi:10.1016/j.seta.2021.101935.
  • Sharma, A., V. V. Tyagi, C. R. Chen, and D. Buddhi. 2009. Review on thermal energy storage with phase change materials and applications. Renewable & Sustainable Energy Reviews 3 (2):318–45. doi:10.1016/j.rser.2007.10.005.
  • Singh, S., K. K. Gaikwad, and Y. S. Lee. 2018. Phase change materials for advanced cooling packaging. Environmental Chemistry Letters 16:845–59. doi:10.1007/s10311-018-0726-7.
  • Surulivel Rajan, T., N. B. Geetha, and S. Rajkumar. 2022. Parametric analysis of thermal behavior of the building with phase change materials for passive cooling. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 44 (3):5627–39. doi:10.1080/15567036.2021.1910752.
  • Tözüm, M. S., S. A. Aksoy, and C. Alkan. 2018. Microencapsulation of three-component thermochromic system for reversible color change and thermal energy storage. Fibers and Polymers 19:660–69. doi:10.1007/s12221-018-7801-3.
  • Venkateswarlu, K., and K. Ramakrishna. 2022. Recent advances in phase change materials for thermal energy storage-a review. Journal of the Brazilian Society of Mechanical Sciences and Engineering 44:6. doi:10.1007/s40430-021-03308-7.
  • Venkitaraj, K. P., B. Praveen, H. Singh, and S. Suresh. 2020. Low melt alloy blended polyalcohol as solid-solid phase change material for energy storage: An experimental study. Applied Thermal Engineering 175:115362. doi:10.1016/j.applthermaleng.2020.115362.
  • Venkitaraj, K. P., S. Suresh, B. Praveen, A. Venugopal, and S. C. Nair. 2017. Pentaerythritol with alumina nano additives for thermal energy storage applications. Journal of Energy Storage 13:359–77. doi:10.1016/j.est.2017.08.002.
  • Venugopal, A., K. K. Anzil, B. G. Thomas, and J. T. Varghese. 2022. Nano-enhanced phase change material for thermal comfort at skull and environment interface in riding helmets: An experimental investigation. Journal of Energy Storage 50:104332. doi:10.1016/j.est.2022.104332.
  • Vishekaii, Z. R., A. Soleimani, E. Fallahi, M. Ghasemnezhad, and A. Hasani. 2019. The impact of foliar application of boron nano-chelated fertilizer and boric acid on fruit yield, oil content, and quality attributes in olive (Olea europaea L.). Scientia horticulturae 257:108689. doi:10.1016/j.scienta.2019.108689.
  • Wi, S., J. Seo, S. G. Jeong, S. J. Chang, Y. Kang, and S. Kim. 2015. Thermal properties of shape-stabilized phase change materials using fatty acid ester and exfoliated graphite nanoplatelets for saving energy in buildings. Solar Energy Materials & Solar Cells 143:168–73. doi:10.1016/j.solmat.2015.06.040.
  • Xu, B., J. Zhou, Z. Ni, C. Zhang, and C. Lu. 2018. Synthesis of novel microencapsulated phase change materials with copper and copper oxide for solar energy storage and photo-thermal conversion. Solar Energy Materials & Solar Cells 48 (2):19–624. doi:10.1016/j.solmat.2018.02.008.
  • Zhu, S., M. T. Nguyen, and T. Yonezawa. 2021. Micro- and nano-encapsulated metal and alloy-based phase-change materials for thermal energy storage. Nanoscale Advances 3 (16):4626–45. doi:10.1039/d0na01008a.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.